【题目】有下列四个结论:
①a÷m+a÷n=a÷(m+n);
② 某商品单价为a元。甲商店连续降价两次,每次都降10%。乙商店直接降20%。顾客选择甲或乙商店购买同样数量的此商品时,获得的优惠是相同的;
③若 ,则 的值为 ;
④关于x分式方程 的解为正数,则 >1。
请在正确结论的题号后的空格里填“正确” ,在错误结论的题号后空格里填“错误”:
①; ②; ③; ④
【答案】错误;错误;正确;错误
【解析】解:①a÷m+a÷n==a÷(m+n),故错误;
②甲商店降价,商品售价为a(1-10%)(1-10%)=0.81a,乙商店降价,商品售价为a(1-20%)=0.8a,所以顾客选择乙商店购买同样数量的此商品时,获得的优惠多,故错误;
③ 由 x2 + y2 + 2x 4y + 5 = 0得x2+2x+1+y2-4y+4=0,即(x+1)2+(y-2)2=0,所以x+1=0且y-2=0,即x=-1,y=2,所以yx=2-1= , 故正确;
④因为关于x分式方程= 1 的解为正数,所以x=a-10,即a>1;又∵原分式方程有解,可得x-10,即a-1-10,即a2,综上,a的取值范围是a>1且a2,故错误.
【考点精析】认真审题,首先需要了解分式方程的解(分式方程无解(转化成整式方程来解,产生了增根;转化的整式方程无解);解的正负情况:先化为整式方程,求整式方程的解),还要掌握完全平方公式(首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.
(1)求证:四边形OCED是菱形;
(2)连接AE,若AB=6cm,BC= cm.
①求sin∠EAD的值;
②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F: 与直线x=-2交于点P.
(1)当抛物线F经过点C时,求它的表达式;
(2)抛物线F上有两点M 、N ,若-2≤ , < ,求m的取值范围;
(3)设点P的纵坐标为 ,求 的最小值,此时抛物线F上有两点M 、N ,
若 ≤-2,比较 与 的大小;
(4)当抛物线F与线段AB有公共点时,直接写出m的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在Rt△ABC与Rt△ECD中,∠ACB=∠ECD=90°,CD为Rt△ABC斜边上的中线,且ED∥BC.
(1)求证:△ABC∽△EDC;
(2)若CE=3,CD=4,求CB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是⊙O的内接正三角形,弦EF经过BC边的中点D,且EF∥AB,若AB=8,则DE的长为( )
A. +1
B.2 ﹣2
C.2 ﹣2
D. +1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com