精英家教网 > 初中数学 > 题目详情

已知O为直线AB上的一点,∠COE是直角, OF 平分∠AOE.

(1)如图①,若∠COF=34°,则∠BOE=      °;若∠COF=m°,则∠BOE=      °;由上面的解答可知:∠BOE与∠COF之间的数量关系应该为                

(2)如图②,(1)中∠BOE与∠COF之间的数量关系是否仍然成立?若成立,请给予证明;若不成立,请说明理由.

(3)如图③,在(2)的情况下,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.

 

【答案】

(1)68;;∠BOE=2∠COF;(2)成立;(3)16°

【解析】

试题分析:(1)根据角平分线的性质结合直角、平角的定义即可得到结果;

(2)设,根据角平分线的性质可得,即可得到,再由可得,从而得到结论;

(3)由∠COF=65°可得∠BOE=2∠COF=130°,即可得到∠AOF的度数,又2∠BOD+∠AOF=(∠BOE-∠BOD),即可求得结果.

(1)若∠COF=34°,则∠BOE=68°;若∠COF=m°,则∠BOE=°;所以∠BOE=2∠COF;

(2)成立.理由如下:  

∵OF 平分∠AOE    

 

   

 

 

∴∠BOE=2∠COF;

(3)存在,∠BOD=16°.理由如下:

∵∠COF=65°    

∴∠BOE=2∠COF=130° 

∴∠AOF=(180°-∠BOE)=25°  

又2∠BOD+∠AOF=(∠BOE-∠BOD)

∴2∠BOD+25°=(130°-∠BOD)

∴∠BOD=16°.

考点:角平分线的性质,比较角的大小

点评:解题的关键是熟练掌握角的平分线把角分成相等的两个小角,且都等于大角的一半,注意本题要有整体意识.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.
(1)如图1,若∠COF=34°,则∠BOE=
 
;若∠COF=n°,则∠BOE=
 
;∠BOE与∠COF的数量关系为
 

(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?如成立请写出关系式;如不成立请说明理由.
(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

33、已知O为直线AB上的一点,∠COE是直角,OF 平分∠AOE.
(1)如图1,若∠COF=34°,则∠BOE=
68°
;若∠COF=m°,则∠BOE=
2m°
;∠BOE与∠COF的数量关系为
∠BOE=2∠COF

(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知C为直线AB上的点,AB=5,BC=6,则AC=
11或1
11或1

查看答案和解析>>

科目:初中数学 来源:2012-2013年四川成都成华区七年级上学期半期考试数学试卷(带解析) 题型:解答题

已知O为直线AB上的一点,∠COE是直角, OF 平分∠AOE.

(1)如图①,若∠COF=34°,则∠BOE=      °;若∠COF=m°,则∠BOE=      °;由上面的解答可知:∠BOE与∠COF之间的数量关系应该为                
(2)如图②,(1)中∠BOE与∠COF之间的数量关系是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图③,在(2)的情况下,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案