已知O为直线AB上的一点,∠COE是直角, OF 平分∠AOE.
(1)如图①,若∠COF=34°,则∠BOE= °;若∠COF=m°,则∠BOE= °;由上面的解答可知:∠BOE与∠COF之间的数量关系应该为 .
(2)如图②,(1)中∠BOE与∠COF之间的数量关系是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图③,在(2)的情况下,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.
(1)68;;∠BOE=2∠COF;(2)成立;(3)16°
【解析】
试题分析:(1)根据角平分线的性质结合直角、平角的定义即可得到结果;
(2)设,根据角平分线的性质可得,即可得到,再由可得,从而得到结论;
(3)由∠COF=65°可得∠BOE=2∠COF=130°,即可得到∠AOF的度数,又2∠BOD+∠AOF=(∠BOE-∠BOD),即可求得结果.
(1)若∠COF=34°,则∠BOE=68°;若∠COF=m°,则∠BOE=°;所以∠BOE=2∠COF;
(2)成立.理由如下:
设
∵OF 平分∠AOE
∴
∴
∵
∴
∴∠BOE=2∠COF;
(3)存在,∠BOD=16°.理由如下:
∵∠COF=65°
∴∠BOE=2∠COF=130°
∴∠AOF=(180°-∠BOE)=25°
又2∠BOD+∠AOF=(∠BOE-∠BOD)
∴2∠BOD+25°=(130°-∠BOD)
∴∠BOD=16°.
考点:角平分线的性质,比较角的大小
点评:解题的关键是熟练掌握角的平分线把角分成相等的两个小角,且都等于大角的一半,注意本题要有整体意识.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012-2013年四川成都成华区七年级上学期半期考试数学试卷(带解析) 题型:解答题
已知O为直线AB上的一点,∠COE是直角, OF 平分∠AOE.
(1)如图①,若∠COF=34°,则∠BOE= °;若∠COF=m°,则∠BOE= °;由上面的解答可知:∠BOE与∠COF之间的数量关系应该为 .
(2)如图②,(1)中∠BOE与∠COF之间的数量关系是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图③,在(2)的情况下,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com