精英家教网 > 初中数学 > 题目详情
17.在平面直角坐标系中,已知直线y=-$\frac{4}{3}$x+4与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标为(0,1.5)或(0,-6).

分析 分两种情况讨论:①当B′在x轴负半轴上时,过C作CD⊥AB于D,先求出A,B的坐标,分别为(3,0),(0,4),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=3,则DB=5-3=2,BC=4-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.②当B'在x轴正半轴上时,设OC=x,在Rt△OCB′中,利用勾股定理可求出x的值.

解答 解:①若B'在x轴左半轴,过C作CD⊥AB于D,如图1,

对于直线y=-$\frac{4}{3}$x+4,令x=0,得y=4;令y=0,x=3,
∴A(3,0),B(0,4),即OA=3,OB=4,
∴AB=5,
又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,
∴AC平分∠OAB,
∴CD=CO=n,则BC=4-n,
∴DA=OA=3,
∴DB=5-3=2,
在Rt△BCD中,DC2+BD2=BC2
∴n2+22=(4-n)2,解得n=1.5,
∴点C的坐标为(0,1.5).
②若B′在x轴右半轴,如图,

则AB′=AB=5,
设OC=x,则CB′=CB=x+4,OB′=OA+AB′=3+5=8,
在Rt△OCB′中,OB′2+OC2=CB′2,即82+x2=(x+4)2
解得:x=6,即可得此时点C的坐标为(0,-6).
故答案为:(0,1.5)或(0,-6).

点评 本题考查了翻折变换的性质及求直线与坐标轴交点的坐标的方法:分别令x=0或y=0,求对应的y或x的值,也考查了勾股定理的应用,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,每个小方格都是边长为1个单位长度的小正方形.
(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1
(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2
(3)观察探究:△A2B2C2.可以由怎样的图形变换得到△A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.
(1)求购买一个足球,一个篮球分别需要多少元?
(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1
第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成$△O{A_3}{B_{_3}}$,依此类推,已知A(1,3),A1(2,3),A2
(4,3),A3(8,3)…B(2,0),B1(4,0),B2
(8,0),B3(16,0)…
①观察每次变化后的三角形,找出规律,按此规律再将
△OA3B3变换成△OA4B4,则A4的坐标为(16,3),B4的坐标为(32,0)
②若按上述规律,将三角OAB进行n次变换,得三角形△OAnBn,比较每次变换三角形顶点的变化规律,探索顶点An的坐标为(2n,3),顶点Bn的坐标为(2n+1,0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向左、向下、向左的方向依次不断移动得A1,A2,A3,A4,A5,…,每次移动的距离分别为1,1,1,2,2,2,3,3,3…,其行走路线如图所示:
(1)填写下列各点的坐标:A3(-1,0)、A6(-3,0)、A9(-6,0);
(2)写出点A3n的坐标(n为正整数);
(3)蚂蚁从原点O到点A33移动的距离是66.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,斜坡下一块平地上有一直立的电线杆AB,小华从山坡下点P沿斜坡向上走15.8m到达点D,用高为1.5m的测角仪CD,测得电线杆顶端的仰角为10°,已知斜坡的坡度为i=1:3,山坡下点P到电线杆的距离PB为6m,求电线杆AB的高.(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,$\sqrt{10}$≈3.16,精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在半径为4的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若四边形AOBC的面积为10,则△DOE的面积是$\frac{9}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.数轴上A点表示的数的倒数是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.看图填空:
(1)如图①,同位角有4对,内错角有2对,同旁内角有2对;
(2)如图②,同位角有4对,内错角有2对,同旁内角有9对;
(3)如图③,同位角有14对,内错角有8对,同旁内角有12对;
(4)如图④,同位角有0对,内错角有2对,同旁内角有5对.

查看答案和解析>>

同步练习册答案