精英家教网 > 初中数学 > 题目详情

通过画图我们可以发现一次函数y=2x-1与反比例函数y的图象交点的个数为___个.

 

【答案】

2

【解析】本题主要考查了反比例函数与一次函数的交点问题。要求一次函数y=2x-1与反比例函数y=的图象的交点个数,就相当于求方程组 的解.

由题意得方程组

可得:2x-1=

2x2-x-4=0,

再由一元二次方程根的判别式△=b2-4ac=33,

而33>0,所以有两个解,

所以两个函数的交点有两个,

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.
这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.

【研究速算】
提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.
(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果

【研究方程】
提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?
几何建模:
(1)变形:x(x+2)=35.
(2)画四个长为x+2,宽为x的矩形,构造图4
(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)
【研究不等关系】
提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?
几何建模:
(1)画长y+3,宽y+2的矩形,按图5方式分割
(2)变形:2y+5=(y+3)+(y+2)
(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
归纳提炼:
当a>2,b>2时,表示ab与a+b的大小关系.
根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

通过阅读所得的启示,回答问题(阅读中的结论可以直接使用).
阅读:在直线上有n个不同的点,则此图中共有多少条线段?
通过画图尝试,我们发现了如下的规律:
图形 直线上点的个数 共有线段条数 两者关系
2 1 1=0+1
3 3 3=0+1+2
4 6 6=0+1+2+3
5 10 10=0+1+2+3+4
n
n(n-1)
2
n(n-1)
2
=0+1+2+3+…+(n-1)
问题:(1)某学校七年级共有8个班级进行辩论比赛,规定采用单循环赛制(每两个班之间赛一场),请问该校七年级的辩论赛共需进行多少场辩论赛?
(2)往返上海与北京之间的某趟火车,共有15个车站(包括上海与北京),则共需要准备多少种不同的车票?

查看答案和解析>>

科目:初中数学 来源:2014湘教版七年级上册(专题训练 状元笔记)数学:第四章 图形的认识 几何图形 线段、射线、直线 湘教版 题型:044

通过阅读所得的启示,回答问题(阅读中的结论可以直接使用).

阅读:在直线上有n个不同的点,则此图中共有多少条线段?

通过画图尝试,我们发现了如下的规律:

问题:(1)某学校七年级共有8个班级进行辩论比赛,规定采用单循环赛制(每两个班之间赛一场),请问该校七年级的辩论赛共需进行多少场辩论赛?

(2)往返上海与北京之间的某趟火车,共有15个车站(包括上海与北京),则共需要准备多少种不同的车票?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

通过阅读所得的启示,回答问题(阅读中的结论可以直接使用).
阅读:在直线上有n个不同的点,则此图中共有多少条线段?
通过画图尝试,我们发现了如下的规律:
图形直线上点的个数共有线段条数两者关系
211=0+1
333=0+1+2
466=0+1+2+3
51010=0+1+2+3+4
n数学公式数学公式=0+1+2+3+…+(n-1)
问题:(1)某学校七年级共有8个班级进行辩论比赛,规定采用单循环赛制(每两个班之间赛一场),请问该校七年级的辩论赛共需进行多少场辩论赛?
(2)往返上海与北京之间的某趟火车,共有15个车站(包括上海与北京),则共需要准备多少种不同的车票?

查看答案和解析>>

同步练习册答案