【题目】如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.
(1)求证:BE⊥CF;
(2)若AB=a,CF=b,求BE的长.
【答案】(1)见详解;(2).
【解析】
(1)由平行四边形的性质和角平分线的性质,证明∠EBC+∠FCB=90°即可解决问题;
(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.构造特殊四边形菱形,利用菱形的性质,结合勾股定理即可解决问题;
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵BE,CF分别是∠ABC,∠BCD的平分线,
∴∠EBC=∠ABC,∠FCB=∠BCD,
∴∠EBC+∠FCB=90°,
∴∠BGC=90°.
即BE⊥CF.
(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵AD∥BC,
∴∠AEB=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∴四边形ABHE是菱形,
∴AH,BE互相垂直平分;
∵BE⊥CF,
∴AH∥CF,
∴四边形AHCF是平行四边形,
∴AP=;
在Rt△ABP中,由勾股定理,得:
,
∴.
科目:初中数学 来源: 题型:
【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:
①
② -10 - (-31)
③1÷(﹣)×;
④(-2)2×5+(-2)3÷4
⑤
(2)比较大小
①1.5与4 ②2与-7
③与 ④ 与
(3)用简便方法计算:
①
②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】回答下列问题:
(1)如图所示的甲、乙两个平面图形能折什么几何体?
(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?
(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB=2,点P是线段AB上一点,分别以AP、BP为边作两个正方形.
(1)如果APx,求两个正方形的面积之和S;
(2)当点P是AB的中点时,求两个正方形的面积之和S1;
(3)当点P不是AB的中点时,比较(1)中的S与(2)中S1的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小左同学想利用影长测量学校旗杆的高度,如图,她在某一时刻立一长度为1米的标杆,测得其影长为米,同时旗杆投影的一部分在地上,另一部分在某一建筑物的墙上,测得旗杆与建筑物的距离为10米,旗杆在墙上的影高为2米,请帮小左同学算出学校旗杆的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.
(规律探索)
(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=__________;
如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=_______;
同种操作,如图3,S阴影3=1--()2-()3=__________;
如图4,S阴影4=1--()2-()3-()4=___________;
……
若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.
(规律归纳)
(2)直接写出+++…+的化简结果:_________.
(规律应用)
(3)直接写出算式+++…+的值:__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若反比例函数与一次函数的图象都经过点A(,2)
(1)求点A的坐标;
(2)求一次函数的解析式;
(3)设O为坐标原点,若两个函数图像的另一个交点为B,求△AOB的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com