精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为

【答案】
【解析】解:如图,设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;

∵AB=13,AC=12,

∴BC= =5.

∵PC+PD=MN,

∴PC+PD≥CD,MN≥CD.

∴当MN=CD时,MN有最小值.

∵PD⊥AB,

∴CD⊥AB.

ABCD= BCAC,

∴CD= = =

∴CD的最小值

∴MN的最小值为

所以答案是:

【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AD⊥BC于点D,AE为∠BAC的平分线,且∠B=36°,∠C=66°.求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,边长为5,D为AC边上一动点,连接BD,⊙O为△ABD的外接圆,过点A作AE∥BC交⊙O于E,连接DE,则△BDE的面积的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣x+4与x轴交于点A,B,B点的坐标为(﹣4,0),与y轴交于点C.

(1)求抛物线的解析式和对称轴.
(2)连接AC、BC,在x轴下方的抛物线上求一点M,使△ABM与△ABC的面积相等.
(3)在x轴下方作平行于x轴的直线l,与抛物线交于点D、E两点(点D在对称轴的左侧).过点D、E分别作x轴的垂线,垂足分别为G、F,当矩形DEFG中DE=2DG时,求D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中正确结论的个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解七年级学生课外活动情况,随机调查了该校若干名学生,调查他们喜欢各类课外活动的情况(课外活动分为四类:A﹣﹣喜欢打乒乓球的人,B﹣﹣喜欢踢足球的人,C﹣﹣喜欢打篮球的人,D﹣﹣喜欢其他的人),并将调查结果绘制成如下两幅不完整的统计图.

根据统计图信息完成下列问题:
(1)调查的学生人数为人.
(2)补全条形统计图和扇形统计图.
(3)若该校七年级共有600人,请估计七年级学生中喜欢打乒乓球的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点在同一直线上,都是射线,互为余角.

(1)有何关系?请证明你的结论;

(2)有何关系?请证明你的结论;

(3)有何关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1=30°,∠B=60°,ABAC.

(1)∠DAB+∠B等于多少度?(2)ADBC平行吗?ABCD平行吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:,…,则第8个等式是__________

查看答案和解析>>

同步练习册答案