精英家教网 > 初中数学 > 题目详情
某玩具厂授权生产工艺品福娃,每日最高产量为30只,且每日生产的产品全部出售.已知生产x只福娃的成本为R(元),每只售价P(元),且R,P与x的表达式分别为R=50+3x,P=170-2x.当日产量为多少时,可获得最大利润?最大利润是多少?
假设生产x只福娃,可获得利润y元,
y=px-R,
=(170-2x)x-(50+3x),
=-2x2+167x-50,
当x=-
b
2a
时,y最大=
4ac-b2
4a

x=-
b
2a
=-
167
2×(-2)
=
167
4
>30,根据二次函数增减性x<
167
4
时,y随x的增大而增大,
又因为每日最高产量为30只,
所以当x=30只时,y取最大值为:-2×302+167×30-50=3160元.
答:日产量为30只时,可获得最大利润,最大利润是3160元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k-1)x+2k-1的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,其中k是一元二次方程p2-p-2=0的根,且k<0.
(1)求这个二次函数的解析式及A、B两点的坐标;
(2)若直线l:y=mx(m≠0)与线段BC交于点D(点D不与点B、C重合),则是否存在这样的直线l,使得以B、O、D为顶点的三角形与△ABC相似?若存在,求出该直线的解析式及点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将一个等腰直角三角板放在坐标系中,如图所示,三个顶点坐标分别是A(0,2),B(2,1),C(1,-1),将三角板绕A点顺时针转α°后,使B点与x轴上的点D(-1,0)重合.
(1)写出点E的坐标和α的值(直接写出结果);
(2)求出过B,C,E三点的抛物线的解析式;
(3)在抛物线的对称轴上是否存在一点P,使△PAD是以AD为腰的等腰三角形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c的顶点为P(1,-2),且经过点A(-3,6),并与x轴交于点B和C.

(1)求这个二次函数的解析式,并求出点C坐标及∠ACB的大小;
(2)设D为线段OC上一点,满足∠DPC=∠BAC,求D的坐标;
(3)在x轴上,是否存在点M,使得以M为圆心的圆能与直线AC、直线PC及y轴都相切?如果存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.
(1)如图,当CE=
2
3
时,求线段BG的长;
(2)当点O在线段BC上时,设
CE
ED
=x
,BO=y,求y关于x的函数解析式;
(3)当CE=2ED时,求线段BO的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,五边形ABCDE为一块土地的示意图.四边形AFDE为矩形,AE=130米,ED=100米,BC截∠F交AF、FD分别于点B、C,且BF=FC=10米.
(1)现要在此土地上划出一块矩形土地NPME作为安置区,且点P在线段BC上,若设PM的长为x米,矩形NPME的面积为y平方米,求y与x的函数关系式,并求当x为何值时,安置区的面积y最大,最大面积为多少?
(2)因三峡库区移民的需要,现要在此最大面积的安置区内安置30户移民农户,每户建房占地100平方米,政府给予每户4万元补助,安置区内除建房外的其余部分每平方米政府投入100元作为基础建设费,在五边形ABCDE这块土地上,除安置区外的部分每平方米政府投入200元作为设施施工费.为减轻政府的财政压力,决定鼓励一批非安置户到此安置区内建房,每户建房占地120平方米,但每户非安置户应向政府交纳土地使用费3万元.为保护环境,建房总面积不得超过安置区面积的50%.若除非安置户交纳的土地使用费外,政府另外投入资金150万元,请问能否将这30户移民农户全部安置?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A?B?C?D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案