精英家教网 > 初中数学 > 题目详情
17.若关于a、b的方程xa-1-2y3+b=5是二元一次方程,则a=2,b=-2.

分析 根据二元一次方程的定义求解即可.

解答 解:由题意,得
a-1=1,3+b=1,
解得a=2,b=-2,
故答案为:2,-2.

点评 本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知一次函数y=kx+b中,x的取值范围是-3≤x≤8,y的取值范围是-2≤y≤20,求这个函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.直线l经过等边三角形ABC的顶点A,如图1,且l⊥AC,AC=AB=BC=4,点P从点A开始沿射线AM运动,连接PC,将△ACP绕点C按逆时针方向旋转60°得到△BCQ,记点P的对应点为Q,线段PA=m(m≥0),当点Q恰好落在直线l上时,点P停止运动.
(1)在图1中,当∠ACP=20°,求∠BQC的值;
(2)在图2中,已知BD⊥l于点D,QE⊥l于点E,ΩF⊥BD于点F,试问:∠BQF的值是否会随着点P的运动而改变?若不会,求出∠BQF的值;若会,请说明理由.
(3)在图3中,连接PQ,记△PAQ的面积为S,请求出S与m的函数关系式(并直接写出m的取值范围),并求出当m为何值时,S有最大值?最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若A=$\frac{201{6}^{2}+201{7}^{2}+1}{2016×2017+1}$,则A的值为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算:4xy2(2x-xy)÷(-2xy)2的结果是2-y.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算
(1)$\left\{\begin{array}{l}{x+y=10}\\{2x-y=20}\end{array}\right.$        
(2)$\sqrt{2\frac{1}{4}}$+$\root{3}{3\frac{3}{8}}$+|3-π|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如果一个多边形的内角和等于它的外角和的2倍,则这个多边形是(  )
A.三角形B.四边形C.五边形D.六边形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.完成下面推理过程:
如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(对顶角相等),
∴∠2=∠CG(等量代换),
∴CE∥BF(同位角相等,两直线平行),
∴∠BFD=∠C  两直线平行,同位角相等;
又∵∠B=∠C(已知),
∴∠BFD=∠B,
∴AB∥CD(内错角相等,两直线平行).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读下面材料:
小聪遇到这样一个问题,如图1,已知△ABC中,延长BC到点D,使CD=BC,取AB的中点E,连接ED交AC于点F,求$\frac{AC}{CF}$的值.
小聪通过探究发现,如图2,过C作CG∥AB,交ED于点G,通过构造△BDE的中位线CG,经过推理和计算可将问题解决,得到$\frac{AC}{CF}$-k.
请回答:
(1)小聪得到的k的值是3.
(2)证明小聪发现的结论.
参考小聪思考问题的方法,解决下面的问题.
(3)如图3,在△ABC中,∠BAC=90°,把AC绕点A顺时针旋转得到线段AD,设∠CAD=a,直线BD,AC交于点E,连接CD,设AE=m,ED=kBE,求AC的长.(用含m,k,a的式子表示).

查看答案和解析>>

同步练习册答案