精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xoy中,已知直线AC的解析式为y=-
12
x+2,直线AC交x轴于点C,交精英家教网y轴于点A.
(1)若一个等腰直角三角形OBD的顶点D与点C重合,直角顶点B在第一象限内,请直接写出点B的坐标;
(2)过点B作x轴的垂线l,在l上是否存在一点P,使得△AOP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)试在直线AC上求出到两坐标轴距离相等的所有点的坐标.
分析:(1)首先根据直线AC的解析式即可求出A、C两点坐标,也就求出了OA、OC的长度,而三角形OBD是等腰直角三角形OBD,接着利用勾股定理和等腰直角三角形即可求出B的坐标;
(2)由于等腰三角形OBD是轴对称图形,对称轴是l,因此得到点O与点C关于直线l对称,所以得到直线AC与直线l的交点即为所求的点P,把x=2代入y=-
1
2
x+2即可求出P的坐标;
(3)可以设满足条件的点Q的坐标为(m,-
1
2
m+2),然后根据到两坐标轴距离相等可以列出方程,然后解方程即可求出m.
解答:解:(1)∵直线AC的解析式为y=-
1
2
x+2,直线AC交x轴于点C,交y轴于点A,
∴A(0,2),C(4,0),
∴OC=4,
∵三角形OBD是等腰直角三角形,精英家教网
∴B(2,2);

(2)∵等腰三角形OBD是轴对称图形,对称轴是l
∴点O与点C关于直线l对称,
∴直线AC与直线l的交点即为所求的点P,
把x=2代入y=-
1
2
x+2,得y=1,
∴点P的坐标为(2,1);

(3)设满足条件的点Q的坐标为(m,-
1
2
m+2),
由题意得-
1
2
m+2=m或-
1
2
m+2=-m,
解得m=
4
3
或m=-4,
∴点Q的坐标为(
4
3
4
3
)或(-4,4).
点评:本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的性质及直线上的点的坐标特点以及直角三角形等知识求出线段的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案