【题目】某水产养殖户进行小龙虾养殖已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价元千克与时间第天之间的函数关系为,日销售量千克与时问第天之间的函数关系如图所示.
求日销售量y与时间t的函数关系式;
求利润w与时间t的函数关系式;
哪一天的日销售利润最大?最大利润是多少?
【答案】(1)y=﹣2t+200(1≤x≤80,t为整数);(2)① 当1≤t≤40时,w=﹣(t﹣30)2+2450,② 当41≤t≤80时,w=(t﹣90)2﹣100;(3)第30天的日销售利润最大,最大利润为2450元.
【解析】
(1)利用待定系数法求解可得一次函数解析式;
(2)根据“日销售利润=每斤的利润×日销售量”,求得函数解析式;
(3)结合t的取值范围分情况求解可得.
(1)设解析式为y=kt+b,
将(1,198)、(80,40)代入,得: , 解得:,
∴y=﹣2t+200(1≤x≤80,t为整数)
(2)设日销售利润为w,则w=(p﹣6)y,
① 当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
② 当41≤t≤80时,w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,
(3)当t=30时,w最大=2450;当t=41时,w最大=2301,
∵2450>2301,
∴第30天的日销售利润最大,最大利润为2450元.
科目:初中数学 来源: 题型:
【题目】我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
特例探索
(1)①如图1,当∠ABE=45°,c=2时,a= ,b= ;
②如图2,当∠ABE=30°,c=4时,求a和b的值.
归纳证明
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.
(3)利用(2)中的结论,解答下列问题:
在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图4所示,求MG2+MH2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量白塔的高度AB,在D处用高为1.5米的测角仪 CD,测得塔顶A的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4
(1)求的值;
(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP
(Ⅰ)求的值;
(Ⅱ)判断CP与AF的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点和点,与y轴交于点C,点P为其顶点,对称轴l与x轴交于点D,抛物线上C、E两点关于对称轴l对称.
求抛物线的函数表达式;
点G是线段OC上一动点,是否存在这样的点G,使与相似,若存在,请求出点G坐标,若不存在请说明理由.
平移抛物线,其顶点P在直线上运动,移动后的抛物线与直线的另一交点为M,与原对称轴l交于点Q,当是以PM为直角边的直角三角形时,请写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,直线与圆有三种位置关系:相交、相切、相离.类比直线与圆的位置关系,给出如下定义:与坐标轴不平行的直线与抛物线有两个公共点叫做直线与抛物线相交;直线与抛物线有唯一的公共点叫做直线与抛物线相切,这个公共点叫做切点;直线与抛物线没有公共点叫做直线与抛物线相离.
(1)记一次函数的图像为直线,二次函数的图像为抛物线,若直线与抛物线相交,求的取值范围;
(2)若二次函数的图像与轴交于点、,与轴交于点,直线l与CB平行,并且与该二次函数的图像相切,求切点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P的坐标为(,),点Q的坐标为(,),且,,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q 的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(3,1)求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com