精英家教网 > 初中数学 > 题目详情
(2009•大连)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.
(1)判断直线CD是否是⊙O的切线,并说明理由;
(2)若CD=,求BC的长.

【答案】分析:(1)根据切线的判定定理,连接OD,只需证明OD⊥CD,根据三角形的外角的性质得∠A=30°,再根据等边对等角得∠ADO=∠A,从而证明结论;
(2)在30°的直角三角形OCD中,求得OD,OC的长,则BC=OC-OB.
解答:解:(1)CD是⊙O的切线
证明:连接OD
∵∠ADE=60°,∠C=30°
∴∠A=30°
∵OA=OD
∴∠ODA=∠A=30°
∴∠ODE=∠ODA+∠ADE=30°+60°=90°
∴OD⊥CD
∴CD是⊙O的切线;

(2)在Rt△ODC中,∠ODC=90°,∠C=30°,CD=3
∵tanC=
∴OD=CD•tanC=3×=3
∴OC=2OD=6
∵OB=OD=3
∴BC=OC-OB=6-3=3.
点评:此题主要考查切线的判定及解直角三角形的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);
(2)若a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2009•大连)如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,)在抛物线上,求m的值.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省大连市中考数学试卷(解析版) 题型:解答题

(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);
(2)若a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省大连市中考数学试卷(解析版) 题型:解答题

(2009•大连)如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,)在抛物线上,求m的值.

查看答案和解析>>

同步练习册答案