精英家教网 > 初中数学 > 题目详情
如图,一次函数的图象与x轴和y轴分别交于点A(6,0)和B(0,),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求过A、B、C三点的抛物线的函数关系式.
(1)        (2)先求出点C(2,0),故
(1)根据A、B的坐标用待定系数法即可求出直线AB的解析式.
(2)本题的关键是求出C点的坐标,可先根据A、B的坐标求出AB的长,即可求出AD的值,然后在直角三角形ACD中根据∠DAC的余弦值求出AC的长,即可求出OC的长也就能求出C点的坐标.然后用待定系数法求出抛物线的解析式.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

将抛物线的图象先向右平移4个单位,再向下平移3个单位所得的解析式为( )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与它的对称轴相交于点,与轴交于,与轴正半轴交于
(1)求这条抛物线的函数关系式;
(2)设直线轴于是线段上一动点(点异于),过轴交直线,过轴于,求当四边形的面积等于时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象的顶点在原点,对称轴为轴.一次函数的图象与二次函数的图象交于两点(的左侧),且点坐标为.平行于轴的直线点.

(1)求一次函数与二次函数的解析式;
(2)判断以线段为直径的圆与直线的位置关系,并给出证明;
(3)把二次函数的图象向右平移个单位,再向下平移个单位,二次函数的图象与轴交于两点,一次函数图象交轴于点.当为何值时,过三点的圆的面积最小?最小面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x轴交于A、B两点.
(1)试确定此二次函数的解析式;
(2)求出抛物线的顶点C的坐标;
(3)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在一个不透明的盒子里装有正面分别标有数,-1,0、1、3的6张卡片,背面完全相同,洗匀后,从中任取两张,该卡片上的数分别作为点P 的横坐标和纵坐标,P落在抛物线与对称轴右侧所围成的区域内(不含边界)的概率是     。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象如图所示,下列结论正确的是(     )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示是二次函数图象的一部分,图象过点(3,0),二次函数图象对称轴为,给出四个结论:①;②;③;④,其中正确结论是(   )
A.②④B.①③C.②③D.①④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面上一点P从点出发,沿射线OM方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP为对角线的矩形OAPB的边长;过点O且垂直于射线OM的直线与点P同时出发,且与点P沿相同的方向、以相同的速度运动.
(1)在点运动过程中,试判断AB与y轴的位置关系,并说明理由.
(2)设点与直线L都运动了t秒,求此时的矩形OAPB与直线在运动过程中所扫过的区域的重叠部分的面积S(用含t的代数式表示).

查看答案和解析>>

同步练习册答案