精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的三边AB、BC、CA的长分别为40、50、60,其三条角平分线交于点O,则SABOSBCOSCAO等于 ( )

A. 1:2:3 B. 2:3:4 C. 3:4:5 D. 4:5:6

【答案】D

【解析】如图过点OOD⊥AC于点D,作OE⊥AB于点E,作OF⊥BC于点F,

∵AO、BO、CO分别平分△ABC的三个内角,

∴OD=OE=OF,

SABO=AB·OESBCO=BC·OFSACO=AC·OD

∴SABOSBCOSCAO=AB·OE BC·OF AC·OD=ABBCAC

∵AB=40BC=50AC=60

∴SABOSBCOSCAO=40:50:60=4:5:6.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+c与抛物线y=ax2+bx+c的图像都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的是( ) ①abc>0; ②3a+b>0; ③﹣1<k<0; ④4a+2b+c<0; ⑤a+b<k.

A.①②③
B.②③⑤
C.②④⑤
D.②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在第一象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个挂钟分针针长20 cm,一昼夜它的尖端所走的路程是________cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=6,BC=8,tan∠B= ,点D是边BC上的一个动点(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C

(1)直接写出抛物线的函数解析式;
(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
(3)将抛物线向上平移 个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.

查看答案和解析>>

同步练习册答案