精英家教网 > 初中数学 > 题目详情
已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC-CB-BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.
(1)求出该反比例函数解析式.
(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标.
(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积S,并指出相应t的取值范围.
(1)∵正方形ABCD的边长为4,
∴C的坐标为(4,4),
设反比例解析式为y=
k
x

将C的坐标代入解析式得:k=16,
则反比例解析式为y=
16
x


(2)当Q在DC上时,如图所示:

此时△APD≌△CQB,
∴AP=CQ,即t=4-4t,解得t=
4
5

则DQ=4t=
16
5
,即Q1
16
5
,4);
当Q在BC边上时,有两个位置,如图所示:

若Q在上边,则△QCD≌△PAD,
∴AP=QC,即4t-4=t,解得t=
4
3

则QB=8-4t=
8
3
,此时Q2(4,
8
3
);
若Q在下边,则△APD≌△BQA,
则AP=BQ,即8-4t=t,解得t=
8
5

则QB=
8
5
,即Q3(4,
8
5
);
当Q在AB边上时,如图所示:

此时△APD≌△QBC,
∴AP=BQ,即4t-8=t,解得t=
8
3

因为0≤t≤
12
5
,所以舍去.
当t=2.4时,P、Q在AB上重合,此时△ADP和△QAD重合,重合时两三角形肯定全等,
∴Q4(2.4,0)
综上,Q1(
16
5
,4)
Q2(4,
8
3
)
;Q3(4,
8
5
),Q4(2.4,0)


(3)S1=8t(0<t≤1);S2=-2t2+2t+8(1≤t≤2);S3=-10t+24(2≤t≤
12
5
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在直角坐标系xOy中,Rt△OCD的一边OC在x轴上.∠C=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD的中点A.
(1)求该反比例函数的解析式;
(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象相交于A、B两点.
(1)利用图中条件,求反比例函数与一次函数的关系式;
(2)根据图象写出使该一次函数的值小于该反比例函数的值的x的取值范围;
(3)过B点作BH垂直于x轴垂足为H,连接OB,在x轴是否存在一点P(不与点O重合),使得以P、B、H为顶点的三角形与△BHO相似?若存在,直接写出点P的坐标;不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-x+4与x轴交于点B,与y轴交于点C,交双曲线y=
k
x
(x<0)
于点N,连ON,且S△OBN=10.

(1)求双曲线的解析式;
(2)如图2,平移直线BC交双曲线于点P,交直线y=-2于点Q,∠FCB=∠QBC,PC=QB求平移后的直线PQ的解析式;
(3)如图3,已知A(2,0)点M为双曲线上一点,CE⊥OM于M,AF⊥OM于F,设梯形CEFA的面积为S,且AF•EF=
2
3
S,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:
①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为y=
20
x
(x>0);④sin∠COA=
4
5

其中正确的结论有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点P是反比例函数y=
k1
x
(k1<0,x<0)
图象上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数y=
k2
x
(0<k2<|k1|)
图象于E、F两点.
(1)用含k1、k2的式子表示以下图形面积:
①四边形PAOB;②三角形OFB;③四边形PEOF;
(2)若P点坐标为(-4,3),且PB:BF=2:1,分别求出k1、k2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=
1
x
(x>0)的图象上,则点E的横坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图在反比例函数y=-
2
x
和y=
3
x
的图象上分别有A、B两点,若ABx轴且OA⊥OB,则
OA
OB
=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=
2
x
于点D,过D作两坐标轴的垂线DC、DE,连接OD.
(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证:AD•BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案