精英家教网 > 初中数学 > 题目详情

(本小题满分12分)

某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.

若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,

成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).

若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为

常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).

(1)当x = 1000时,y =        元/件,w内 =        元;

(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);

(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;

(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?

参考公式:抛物线的顶点坐标是

 

 

(1)140       57500

(2)w外 = x2+(150)x

(3)a = 30

(4)当10≤ a <32.5时,选择在国外销售;

当a = 32.5时,在国外和国内销售都一样;

当32.5< a ≤40时,选择在国内销售

解析:

解:(1)140    57500;

(2)w内 = x(y -20)- 62500 = x2+130 x

w外 = x2+(150)x.

(3)当x = = 6500时,w内最大;分

由题意得

解得a1 = 30,a2 = 270(不合题意,舍去).所以 a = 30.

(4)当x  = 5000时,w内 = 337500, w外 =

若w内 < w外,则a<32.5;

若w内 = w外,则a = 32.5;

若w内 > w外,则a>32.5.

所以,当10≤ a <32.5时,选择在国外销售;

当a = 32.5时,在国外和国内销售都一样;

当32.5< a ≤40时,选择在国内销售.

 

练习册系列答案
相关习题

科目:初中数学 来源:2011-2012学年九年级第二次模拟考试数学卷 题型:解答题

(本小题满分12分)

如图,反比例函数的图象经过A、B两点,根据图中信息解答下列问题:

1.(1)写出A点的坐标;

2.(2)求反比例函数的解析式;

3.(3)若点A绕坐标原点O旋转90°后得到点C,请写出点C的坐标;并求出直线BC的解析式.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年河北省衡水市五校九年级第三次联考数学卷 题型:解答题

(本小题满分12分)

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

1.(1)问:始终与△AGC相似的三角形有               

2.(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);

3.(3)问:当x为何值时,△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年河北省衡水市五校九年级第三次联考数学卷 题型:解答题

(本小题满分12分)某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长。(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离。阅读后回答下列问题:

1.(1)方案(I)是否可行?为什么?

2.(2)方案(II)是否切实可行?为什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否测得(或求出)AB的长?理由是         ,若ED=m,则AB=      

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏GSJY八年级第二次学情调研考试数学卷 题型:解答题

  (本小题满分12分)

 1. (1)观察发现

    如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为        . (2分)

        

 

2.(2)实践运用

   如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.  (5分)

 

查看答案和解析>>

科目:初中数学 来源:2014届湖北省孝感市七年级下学期期中考试数学卷 题型:解答题

.(本小题满分12分)

如图,AD为△ABC的中线,BE为△ABD的中线。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;

(2)在△BED中作BD边上的高;

(3)若△ABC的面积为40,BD=5,则△BDEBD边上的高为多少?

 

查看答案和解析>>

同步练习册答案