【题目】如图,在△ABD中,C为AD上一点,AB=CD=1,∠ABC=90°,∠CBD=30°,则AC=_____.
【答案】
【解析】
首先利用有30°角的直角三角形的性质和勾股定理,设BE为x,求得DE用x表示;作DE垂直于AB的延长线于点E,设AC为y,利用平行线分线段成比例,用x表示y;再利用△ABC∽△AED,求得BC(用含x的式子表示),最后在Rt△ABC中再利用勾股定理建立方程,求出x,从而解决问题.
解:分别过点A、C作AE⊥BD,CF⊥BD交BD于点,F两点,
如图所示:
设CF的长为x,AC的长为y,
∵AE⊥BD,
∴∠AEB=90°,
又∵∠ABE+∠ABC+∠CBD=180°,
∠ABC=90°,∠CBD=30°,
∴∠ABE=60°,
又∵AB=1,
∴AE=,
又∵CF⊥BD,
∴∠CFB=∠CFD=90°,
又∵∠CBD=30°,
∴BC=2x,
又∵∠ABC=90°,AB=1,
∴,
∴,
又∵AE⊥BD,CF⊥BD,
∴CF∥AE,
∴△DCF∽△DAE,
∴,
即,
整理得:,
两边分别平方得:,
把代入得:,
整理得:,
,
解得:y=﹣2(舍去),y=,
即AC的长为,
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是( )
A.5
B.4.8
C.4.6
D.4.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,MN//EF, 点C 为两直线之间一点,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点 D ,则∠ACB与 ∠ADB 之间的数量关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数(k<0)的图像经过点A(,m),过点A作AB⊥x轴于点,且△AOB的面积为.
(1)求k和m的值;
(2)若一次函数y=ax+1的图像经过点A,并且与x轴相交于点C,求∠ACO的度数及的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式.
(2)D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围.
②当m为何值时,S有最大值,并求这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________cm,他途中休息了________min.
⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:
进价(元/台) | 售价(元/台) | |
电饭煲 | 200 | 250 |
电压锅 | 160 | 200 |
(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?
(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;
(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com