精英家教网 > 初中数学 > 题目详情
如图所示,在⊙O中,AB是弦,半径0C⊥AB,垂足为D,AB=8cm,CD=2cm,则0D等于(  )
分析:连接AO,由OC垂直于AB,利用垂径定理得到D为AB的中点,求出AD的长,设圆的半径为r,由OC-CD表示出OD,在直角三角形AOD中,利用勾股定理求出r的值,即可确定出OD的值.
解答:解:连接AO,
∵OC⊥AB,∴D为AB的中点,
∴AD=4cm,
设圆的半径为r,
在Rt△AOD中,OD=OC-CD=(r-2)cm,
根据勾股定理得:OA2=AD2+OD2,即r2=16+(r-2)2
解得:r=5,
则OD=5-2=3cm.
故选C
点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在?ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=
12
AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠C=90°,D是AC边上一点,且AD=DB=5,CD=3,求tan∠CBD和sinA.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,在?ABCD中,E,F分别AB,CD的中点,连接DE,EF,BF,则图中平行四边形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,在△ABC中画出长宽之比为2:1的矩形,使长边在BC上.(注:保留画图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,已知D是BC边上的点,O为△ABD的外接圆圆心,△ACD的外接圆与△AOB的外接圆相交于A,E两点.求证:OE⊥EC.

查看答案和解析>>

同步练习册答案