从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是( )
A. 6 B. 7 C. 8 D. 9
D 【解析】试题分析:根据从一个n边形的某个顶点出发,可以引(n﹣3)条对角线,把n边形分为(n﹣2)的三角形作答. 【解析】 设多边形有n条边, 则n﹣2=6, 解得n=8. 故选C.科目:初中数学 来源:2017-2018学年七年级数学北师大版上册:第4章 基本平面图形 单元测试卷 题型:单选题
如图,一条流水生产线上L1、L2、L3、L4、L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是( )
A. L2处 B. L3处 C. L4处 D. 生产线上任何地方都一样
B 【解析】试题分析:设在L3处为最佳,求出此时的总距离为L1L5+L2L4,假如设于任意的X处,求出总距离为L1L5+L2L4+L3X,和L1L5+L2L4比较即可. 【解析】 在5名工人的情况下,设在L3处为最佳,这时总距离为L1L5+L2L4, 理由是:如果不设于L3处,而设于X处,则总距离应为L1L5+L2L4+L3X>L1L5+L2L4, 即在L3处5个工人到供...查看答案和解析>>
科目:初中数学 来源:广东省汕头市澄海区2018届九年级上学期期末质量检测数学试卷 题型:填空题
如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为__________.
3 【解析】试题解析: 由旋转的性质可得:AD=AB, ∴△ABD是等边三角形, ∴BD=AB, ∵AB=4,BC=7, ∴CD=BC?BD=7?4=3. 故答案为:3.查看答案和解析>>
科目:初中数学 来源:2018人教版八年级数学下册练习:第十八章达标检测卷 题型:解答题
如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D。
(1)求证:BE=CF ;
(2)当四边形ACDE为菱形时,求BD的长。
(1)证明见解析(2)-1 【解析】试题分析:(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD; (2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的...查看答案和解析>>
科目:初中数学 来源:2018人教版八年级数学下册练习:第十八章达标检测卷 题型:填空题
对角线长为2的正方形的周长为___________,面积为__________
2 【解析】根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可知正方形的边长平方是2,即这个正方形的面积为2.正方形的边长是,所以周长是4. 故答案为:4,2.查看答案和解析>>
科目:初中数学 来源:2018人教版八年级数学下册练习:第十八章达标检测卷 题型:单选题
正方形具有而菱形不具有的性质是
A.四条边相等 B.对角线互相垂直平分
C.对角线平分一组对角 D.对角线相等
D 【解析】 试题分析:正方形的性质四条边相等,四个角相等对角线相等且垂直,互相平分.菱形的性质四条边相等,对角线垂直且互相平分.所以选D.查看答案和解析>>
科目:初中数学 来源:广西合浦县2017年秋季学期教学质量监测七年级数学试卷 题型:解答题
如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.
(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子,并用线段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.
(1)作图见解析;(2)米. 【解析】试题分析:(1)连接AC,过D点作AC的平行线即可; (2)过M作MN⊥DE于N,利用相似三角形列出比例式求出旗杆的高度即可. 试题解析:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子. (2)过M作MN⊥DE于N, 设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB, ∴ 又∵AB=1.6,BC=2...查看答案和解析>>
科目:初中数学 来源:广东省东莞市翰林学校2017-2018学年八年级(上)期中数学试卷(word版含答案解析) 题型:解答题
把下列各数分别填入相应的集合里.
﹣5,﹣2.626 626 662…,0,π,﹣ ,0.12,|﹣6|.
(1)正数集合:{ …};
(2)负数集合:{ …};
(3)有理数集合:{ …};
(4)无理数集合:{ …}.
π,0.12,|﹣6|;﹣5,﹣2.626 626 662…,﹣;﹣5,0,﹣,0.12,|﹣6|;﹣2.626 626 662…,π. 【解析】试题分析:依据正数,负数数,有理数,无理数的概念判断即可. 试题解析: 正数集合: 负数集合: 有理数集合: 无理数集合:查看答案和解析>>
科目:初中数学 来源:山东省德州地区2017-2018学年度九年级第一学期期末检测数学试卷 题型:单选题
在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半径交BC于点M、N,半圆O与AB、AC相切,切点分别为D、E,则半圆O的半径和的度数分别为( )
A. 2,22.5° B. 3,30° C. 3,22.5° D. 2,30°
A 【解析】试题分析:∵△ABC为等腰直角三角形, ∴BC=AB=,∠B=45°, ∵点O为BC的中点, ∴OB=, ∵AB为切线, ∴OD⊥AB, ∴∠ODB=90°, ∴△ODB为等腰直角三角形, ∴OD=OB=×=2,∠BOD=45°, ∴∠MND=∠BOD=22.5°. 故选A.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com