精英家教网 > 初中数学 > 题目详情
(2009•仙桃)如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度???为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

【答案】分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,CB、CN已知,根据勾股定理可求CA=5,即可表示CM;
(2)四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;
(3)可先根据QN平分△ABC的周长,得出MC+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.
(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:
①当MP=MC时,那么PC=2NC,据此可求出t的值.
②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.
③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.
综上所述可得出符合条件的t的值.
解答:解:(1)∵AQ=3-t,
∴CN=4-(3-t)=1+t.
在Rt△ABC中,AC2=AB2+BC2=32+42
∴AC=5.
在Rt△MNC中,cos∠NCM==,CM=

(2)由于四边形PCDQ构成平行四边形,
∴PC=QD,即4-t=t,
解得t=2.

(3)如果射线QN将△ABC的周长平分,则有:
MC+NC=AM+BN+AB,
即:(1+t)+1+t=(3+4+5),
解得:t=.(5分)
而MN=NC=(1+t),
∴S△MNC=(1+t)2=(1+t)2
当t=时,S△MNC=(1+t)2=×4×3.
∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分;

(4)①当MP=MC时;则有:NP=NC,
即PC=2NC∴4-t=2(1+t),
解得:t=
②当CM=CP时;则有:(1+t)=4-t,
解得:t=
③当PM=PC时;则有:在Rt△MNP中,PM2=MN2+PN2
而MN=NC=(1+t),
PN=|PC-NC|=|(4-t)-(1+t)|=|3-2t|,
∴[(1+t)]2+(3-2t)2=(4-t)2
解得:t1=,t2=-1(舍去)
∴当t=,t=,t=时,△PMC为等腰三角形.
点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2009•仙桃)如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:2010年山东省德州市武城县九年级练兵考试数学试卷(一)(解析版) 题型:解答题

(2009•仙桃)如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省江汉油田中考数学试卷(解析版) 题型:解答题

(2009•仙桃)如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《图形的平移》(01)(解析版) 题型:选择题

(2009•仙桃)如图,把图中的⊙A经过平移得到⊙O(如左图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P’的坐标为( )

A.(m+2,n+1)
B.(m-2,n-1)
C.(m-2,n+1)
D.(m+2,n-1)

查看答案和解析>>

同步练习册答案