精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是

【答案】
【解析】解:作EF∥AC且EF= , 连结DF交AC于M,在AC上截取MN= , 延长DF交BC于P,作FQ⊥BC于Q,
则四边形BMNE的周长最小,
由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,
∵∠DPC=∠FPQ,∠DCP=∠FQP,
∴△PFQ∽△PDC,
=
=
解得:PQ=
∴PC=
由对称性可求得tan∠MBC=tan∠PDC==
所以答案是

【考点精析】认真审题,首先需要了解轴对称-最短路线问题(已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明将他的7次数学测验成绩按顺序绘成了两幅统计图,依此来观察自己近期数学的学习情况和成绩的进步情况.

(1)甲、乙两幅统计图所表示的数据相同吗?甲图和乙图给人造成的感觉各是什么?

(2)若小明要向他的父母说明他的数学成绩在努力后的情况,他将向父母展示哪幅统计图,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算.

(1)﹣7+13﹣6+20;

(2)3+(﹣2)﹣3×(﹣5)×0;

(3)16÷(﹣2)3﹣(﹣)×(﹣4);

(4)﹣36×();

(5)(2a2﹣1+2a)﹣(a﹣1+a2);

(6)8a+2b﹣2(5a﹣2b).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对某市8所学校抽取共1 000名学生进行800米跑达标抽样检测.结果显示该市达标学生人数超过半数,达标率达到52.5%.图l、图2反映的是本次抽样中的具体数据.

根据以上信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有(  )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线AC、BD交于点O,以OB为直径画圆M,过D作⊙M的切线,切点为N,分别交AC、BC于点E、F,已知AE=5,CE=3,则DF的长是(  )

A.3
B.4
C.4.8
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:ABCF

(2)BCAF满足什么数量关系时,四边形ABFC是矩形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】”4.20芦山地震”发生后,各地积极展开抗震救援工作,一支救援车队经过如图1所示的一座拱桥,拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,将抛物线放在所给的直角坐标系中(如图2所示),拱桥的拱顶在y轴上.
(1)求拱桥所在抛物线的解析式;
(2)求支柱MN的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2m、高2.4m的三辆汽车(隔离带与内侧汽车的间隔、汽车间的间隔、外侧汽车与拱桥的间隔均为0.5m)?请说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中.

(1)把△ABC进行平移,得到△A′B′C′,使点AA′对应,请在网格中画出△A′B′C′;

(2)线段AA′与线段CC′的位置关系是:   ;(填平行相交”)

(3)求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.

(1)经过多长时间,四边形PQCD是平行四边形?

(2)经过多长时间,四边形PQBA是矩形?

(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.

查看答案和解析>>

同步练习册答案