精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的 倍,得到矩形A1OC1B1 , 再将矩形A1OC1B1以原点O为位似中心放大 倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为

【答案】(﹣
【解析】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的 倍,
∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,
∵OA=2,OC=1.
∵点B的坐标为(﹣2,1),
∴点B1的坐标为(﹣2× ,1× ),
∵将矩形A1OC1B1以原点O为位似中心放大 倍,得到矩形A2OC2B2…,
∴B2(﹣2× × ,1× × ),
∴Bn(﹣2× ,1× ),
∵矩形AnOCnBn的对角线交点(﹣2× × ,1× × ),即(﹣ ),
故答案为:(﹣ ).
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得Bn的坐标,然后根据矩形的性质即可求得对角线交点的坐标.本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,函数y=-x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=-1,在下列结论中,错误的是(  )
A.顶点坐标为(-1,4)
B.函数的解析式为y=-x2-2x+3
C.当x<0时,y随x的增大而增大
D.抛物线与x轴的另一个交点是(-3,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中真命题是( )
A.两个等腰三角形一定全等
B.正多边形的每一个内角的度数随边数增多而减少
C.菱形既是中心对称图形,又是轴对称图形
D.两直线平行,同旁内角相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正比例函数ykx的图象经过点P(12)如图所示

(1)求这个正比例函数的解析式;

(2)将这个正比例函数的图象向右平移4个单位长度求出平移后的直线的解析式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中, 不是同位角的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县各中小学校积极组织学生开展课外阅读活动为了解某校学生每周课外阅读的时间量t(单位小时),采用随机抽样的方法抽取部分学生进行了问卷调查调查结果按0t〈2,2t〈3,3t〈4,t4分为四个等级并分别用A、B、C、D表示.根据调查结果统计数据绘制成如图所示的两幅不完整的统计图由图中给出的信息解答下列问题

(1)求这次抽查的学生总数是多少人并求出x的值

(2)将不完整的条形统计图补充完整

(3)若该校共有学生3600试估计每周课外阅读时间量满足2t〈4的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直线AB上一点O为端点作射线OC,将一块直角三角板的直角顶点放在O(:∠DOE=90°).

(1)如图①,若直角三角板DOE的一边OD放在射线OB∠BOC=60°,∠COE的度数

(2)如图②,将三板DOEO逆时针转动到某个位置时若恰好满足5∠COD=∠AOE,∠BOC=60°,∠BOD的度数

(3)如图③,将直角三角板DOE绕点O逆时针方向转动到某个位置OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H;下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正确的结论有___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为

查看答案和解析>>

同步练习册答案