精英家教网 > 初中数学 > 题目详情
15.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第2块.

分析 本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.

解答 解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,
只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.
故答案为:2.

点评 本题主要考查了全等三角形的应用,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.已知:一个正数的两个平方根分别是2a-2和a-4,则这个正数的立方根是$\root{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,点Q是CA边上一个动点.
(1)求该抛物线的解析式;
(2)若点M为抛物线的对称轴上一个动点,求点M的坐标使MQ+MA的值最小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1、2,A、B是y轴上的两点(点A在点B的上边),C、D是x轴上的两点(点C在点D的左边),E、F分别是BC、AD的中点.
(1)如图1,过点C作x轴的垂线交AE的延长线于点P,求证:AB=PC;
(2)如图1,连接EF,若AB=4,CD=2,求EF的长;
(3)如图2,若AB=CD,当线段AB、CD分别在y轴、x轴上滑动时,直线EF与x轴正方向的夹角∠α的大小是否会发生变化?若变化,请你说明理由;若不变,请你求出∠α的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解:
如图1,在四边形ABCD中添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.
(2)问题探究:
①小红猜想:对角线互相垂直的“等邻边四边形”一定是菱形.她的猜想正确吗?请说明理由.
②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=2,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结BA′,CC′,小红要使平移后的四边形A′BCC′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.观察下列式子:①$\sqrt{2-\frac{2}{5}}=2\sqrt{\frac{2}{5}}$;②$\sqrt{3-\frac{3}{10}}=3\sqrt{\frac{3}{10}}$;③$\sqrt{4-\frac{4}{17}}=4\sqrt{\frac{4}{17}}$;④$\sqrt{5-\frac{5}{26}}=5\sqrt{\frac{5}{26}}$;…请你按照规律写出第n(n≥1)个式子是(  )
A.$\sqrt{n-1-\frac{n-1}{(n-1)^{2}+1}}$=(n-1)$\sqrt{\frac{n-1}{(n-1)^{2}+1}}$B.$\sqrt{n-\frac{n}{{n}^{2}-1}}=n\sqrt{\frac{n}{{n}^{2}-1}}$
C.$\sqrt{n+1-\frac{n+1}{(n+1)^{2}+1}}$=(n+1)$\sqrt{\frac{n+1}{(n+1)^{2}+1}}$D.$\sqrt{n-\frac{n}{{n}^{2}+1}}=n\sqrt{\frac{n}{{n}^{2}+1}}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在三角板ABC中,∠ACB=90°,∠A=30°,AC=6,将三角板ABC绕点C逆时针旋转,当起始位置时的点B恰好落在边A1B1上时,A1B的长为2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.AB是⊙O的直径,弦CD是与⊙O相切,且AB∥CD,弦CD=16cm,则阴影部分面积为(  )
A.144πcm2B.64πcm2C.79πcm2D.81πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.菱形的对角线长分别为3和4,则该菱形的面积是(  )
A.6B.8C.12D.24

查看答案和解析>>

同步练习册答案