精英家教网 > 初中数学 > 题目详情
10.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE;②AE=BE;③OD=DE;④∠AEO=∠C;⑤$\widehat{AE}$=$\frac{1}{2}$$\widehat{AEB}$.正确结论的个数是(  )
A.2B.3C.4D.5

分析 已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.

解答 解:∵OE是⊙O的半径,且D是AB的中点,
∴OE⊥AB,$\widehat{AE}$=$\widehat{BE}$=$\frac{1}{2}$$\widehat{AEB}$;(故①⑤正确)
∴AE=BE;(故②正确)
由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;
故选B.

点评 本题考查的是垂径定理,涉及到了圆心角、弧、弦的关系及垂径定理的推论;垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.已知a=-2,b=-$\frac{1}{2}$,则a2n•(abn+12=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,在矩形ABCD中,BC=2$\sqrt{3}$,AB=6,在Rt△EOF中,∠FOE=90°,EO=4,EF=8,点E在CB的延长线上,点O与点B重合.现将Rt△EOF绕点O按顺时针方向旋转,OF与AD边交于点P,旋转时,点P以每秒$\sqrt{3}$个单位长度的速度沿AD运动,当点P到达点D时,Rt△EOF停止旋转运动,立即改为沿BC边以每秒$\sqrt{3}$个单位长度的速度向点C平移,当点O到达点C时,停止运动.设Rt△EOF的运动时间为x(秒).
(1)当x为多少时,点P到达点D;
(2)Rt△EOF在运动过程中与矩形ABCD重合部分的面积为y,求y与x的函数关系式;
(3)在平移过程中,线段OE与AB的交点为M,是否存在某时刻x,使△MDO为等腰三角形?若存在,请直接写出;不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图是一个直角三角形纸片,其中∠C=90°,两直角边长分别为3cm,4cm,现要给这个纸片再拼接一个直角三角形纸片,两纸片不重叠且无缝隙,使得拼接后的纸片形状是等腰三角形,拼接成的等腰三角形的纸片的周长为16或18cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)解方程:$\frac{x-2}{x+2}$-$\frac{12}{{x}^{2}-4}$=1
(2)先化简,再求值:$\frac{2a+6}{{a}^{2}-4a+4}$$•\frac{a-2}{{a}^{2}+3a}$-$\frac{1}{a-2}$,其中a=-cos45°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在面积为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:
①△BDF≌△DCE;②S四边形ABCD=$\frac{{\sqrt{3}}}{4}$AM2;③△AMH是等边三角形;④∠BMD=120°.其中正确结论的序号是①③④.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠DEA相等的角有(  )
A.2个B.3个C.4个D.5 个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.在实数:5.2,-$\frac{2}{3}$,0.028,$\sqrt{3}$,$\root{3}{10}$,3$\frac{1}{2}$,3.14中,无理数的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案