精英家教网 > 初中数学 > 题目详情
19.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

分析 设Q是AB的中点,连接DQ,先证得△AQD≌△AOE,得出QD=OE,根据点到直线的距离可知当QD⊥BC时,QD最小,然后根据等腰直角三角形的性质求得QD⊥BC时的QD的值,即可求得线段OE的最小值.

解答 解:设Q是AB的中点,连接DQ,
∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
∵AB=AC=4,O为AC中点,
∴AQ=AO,
在△AQD和△AOE中,
$\left\{\begin{array}{l}{AQ=AO}\\{∠QAD=∠OAE}\\{AD=AC}\end{array}\right.$,
∴△AQD≌△AOE(SAS),
∴QD=OE,
∵点D在直线BC上运动,
∴当QD⊥BC时,QD最小,
∵△ABC是等腰直角三角形,
∴∠B=45°,
∵QD⊥BC,
∴△QBD是等腰直角三角形,
∴QD=$\frac{\sqrt{2}}{2}$QB,
∵QB=$\frac{1}{2}$AB=2,
∴QD=$\sqrt{2}$,
∴线段OE的最小值是为$\sqrt{2}$.
故选D.

点评 本题考查了等腰直角三角形的性质、三角形全等的判定和性质、垂线段最短等知识,解题的关键是学会添加辅助线构建全等三角形,学会利用垂线段最短解决最值问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

9.如图,一场大风后,一棵大树在高于地面1米处折断,大树顶部落在距离大树底部3米处的地面上,那么树高是(  )
A.4mB.$\sqrt{10}$mC.($\sqrt{10}$+1)mD.($\sqrt{10}$+3)m

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列方程中,是一元一次方程的是(  )
A.x2-4x=3B.x+1=0C.x+2y=1D.x-1=$\frac{1}{x}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,有一圆柱,其高为8cm,它的底面半径2cm,在下底面点A处有一只蚂蚁,它想得到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程为10cm cm(注:π取3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.若|x-1|+|xy-2|+|xz+3|=0,求5x-y+z的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某公司准备投资开发A、B两种新产品,信息部通过调研得到两条信息:
信息一:如果投资A种产品,所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;
信息二:如果投资B种产品,所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.
根据公司信息部报告,yA、yB(万元)与投资金额x(万元)的部分对应值如下表所示:
x(万元)12
yA(万元)0.81.6
yB(万元)2.34.4
(1)填空:yA=0.8x; yB=-0.1x2+2.4x;
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),B种产品的投资金额为x(万元),则A种产品的投资金额为(20-x)万元,并求出W与x之间的函数关系式;
(3)请你设计一个在(2)中公司能获得最大总利润的投资方案.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.小明发现关于x的方程★x-6=4中的x的系数被污染了,要解方程怎么办?他翻开资料的答案一看,此方程的解为x=-2,则★=?(  )
A.★=-5B.★=3C.★=4D.★=-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行8km,到达C村,最后回到邮局.
(1)以邮局为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;
(2)C村距离A村有多远?
(3)邮递员共骑行了多少km?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列命题中:
①两个端点能够重合的弧是等弧;
②圆的任意一条弦把圆分成优弧和劣弧两部分;
③长度相等的弧是等弧;
④半径相等的两个圆是等圆;
⑤直径是最大的弦;
⑥半圆所对的弦是直径.
其中是真命题的有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

同步练习册答案