【题目】如图,∠A+∠B+∠C+∠D+∠E+∠F=_______度.
【答案】360°
【解析】
先根据图形的特点,将∠A +∠B、∠C +∠D和∠E +∠F分别转化成和它不相邻的外角,再根据邻补角的定义转化为一个三角形的内角,然后利用三角形的内角和定理求解即可.
如图,记BF交DE于G,交AC于H,DE交AC于I ,
∵∠FHI=∠A +∠B,
∴∠GHI=180°-∠FHI=180°-(∠A+ ∠B),
∵∠AIG=∠C +∠D,
∴∠GIH=180°-∠AIG=180°-(∠C +∠D),
∵∠BGI=∠E +∠F,
∴∠HGI=180°-∠BGI=180°-(∠E +∠F),
∵∠GHI+∠GIH +∠HGI=180°,
∴180°-(∠A +∠B)+ 180°-(∠C +∠D)+ 180°-(∠E+ ∠F)=180°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
科目:初中数学 来源: 题型:
【题目】如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.
(1)求证:AC∥PO;
(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>的x的取值范围;
(3)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在每个小正方形的边长为1的网格中,点A、B、C均在格点上,在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度直尺画出点P(保留画图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程(组)或不等式(组)解应用题:
(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?
(2)某工厂准备购进、两种机器共20台用于生产零件,经调查2台型机器和1台型机器价格为18万元,1台型机器和2台型机器价格为21万元.
①求一台型机器和一台型机器价格分别是多少万元?
②已知1台型机器每月可加工零件400个,1台型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数﹣5,|﹣1.5|,﹣,0,3,﹣(﹣1)表示的点.
(1)画在数轴上;
(2)用“<”把这些数连接起来;
(3)指出:负数是 ;分数是 ;非负整数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
根据以上信息,解答下列问题:
(1)被调查的学生中,最喜欢乒乓球的有 人,最喜欢篮球的学生数占被调查总人数的百分比为 %;
(2)被调查学生的总数为 人,其中,最喜欢篮球的有 人,最喜欢足球的学生数占被调查总人数的百分比为 %;
(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com