精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y1=kx+b(k≠0)和反比例函数y2= (m≠0)的图象交于点A(﹣1,6),B(a,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出y1>y2时,x的取值范围.

【答案】
(1)解:把点A(﹣1,6)代入反比例函数y2= (m≠0)得:

m=﹣1×6=﹣6,

将B(a,﹣2)代入 得:

﹣2=

a=3,

∴B(3,﹣2),

将A(﹣1,6),B(3,﹣2)代入一次函数y1=kx+b得:

∴y1=﹣2x+4


(2)解:由函数图象可得:x<﹣1或0<x<3
【解析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在反比例函数y=﹣ 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动.若tan∠CAB=2,则k的值为(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕 点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF、CF.

(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形.

(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移 个单位长度得到三角形 ,点ABC的对应点分别为 .

(1)写出点 的坐标

(2)在图中画出平移后的三角形

(3)三角形 的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若反比例函数y= (k≠0)的图象经过点(1,﹣3),则一次函数y=kx﹣k(k≠0)的图象经过象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两位运动员在一段2000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y米,比赛时间是x秒,当两人都到达终点计时结束,整个过程中y与之间的函数图象是(

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列解题过程,然后回答问题:

解方程:

解:①当≥0时,原方程可化为: ,解得

②当<0时,原方程可化为: ,解得

所以原方程的解是

(1)解方程:

(2)探究:当为何值时,方程 ①无解;②只有一个解;③有两个解。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校在落实国家“营养餐”工程中,选用了A,B,C,D种不同类型的套餐.实行一段时间后,学校决定在全校范围内随机抽取部分学生对“你喜欢的套餐类型(必选且只选一种)”进行问卷调查,将调查情况整理后,绘制成如图所示的两个统计图.
请你根据以上信息解答下列问题:
(1)在这次调查中,一共抽取了名学生;
(2)请补全条形统计图;
(3)如果全校有1200名学生,请你估计其中喜欢D套餐的学生的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.

(1)发现:在图1中, =
(2)应用:如图2,将△ADE绕点A旋转,请求出 的值;

(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出 的值.

查看答案和解析>>

同步练习册答案