精英家教网 > 初中数学 > 题目详情
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,D是图象上的一点,M为抛物线的顶点.已知A(-1,0),C(0,5),D(1,8).
(1)求抛物线的解析式.
(2)求△MCB的面积.
(1)由题意得,
0=a-b+c
5=c
8=a+b+c

解得:
a=-1
b=4
c=5

∴y=-x2+4x+5.
(2)令y=0,得-x2+4x+5=0,
解得:x1=5,x2=-1,
∴B(5,0),
由y=-x2+4x+5=-(x-2)2+9,得M(2,9),
作ME⊥y轴于点E,
则S△MCB=S梯形MEOB-S△MCE-S△OBC=
1
2
(2+5)×9-
1
2
×4×2-
1
2
×5×5=15.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+bx+4
与x轴和y轴的正半轴分别交于点A和B,已知A点坐标为(4,0).
(1)求抛物线的解析式.
(2)如图,连接AB,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)若抛物线y=-
1
2
x2+bx+4
上有一点F(-k-1,-k2+1),当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,B、C两点的坐标分别为B(1,0)、C(0,
3
)
,且当x=-10和x=8时函数的值y相等.
(1)求a、b、c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.连接MN,将△BMN沿MN翻折,当运动时间为几秒时,B点恰好落在AC边上的P处?并求点P的坐标;
(3)上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

为解决药价虚高给老百姓带来的求医难的问题,国家决定对某药品分两次降价.若设平均每次降价的百分率为x,该药品的原价是m元,降价后的价格是y元,则y与x的函数关系式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=x+m图象过点A(1,0),交y轴于点B,C为y轴负半轴上一点,且BC=2OB,过A、C两点的抛物线交直线AB于点D,且CDx轴.
(1)求这条抛物线的解析式;
(2)观察图象,写出使一次函数值小于二次函数值时x的取值范围;
(3)在这条抛物线上是否存在一点M使得∠ADM为直角?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),已知抛物线y=ax2+b与x轴交于A、B两点(A在B的左边),与y轴交于点M,点B的坐标为(4,0),点M的坐标为(0,-4).
(1)求抛物线的解析式;
(2)点N的坐标为(O,-3),作DN⊥y轴于点N,交抛物线于点D;直线y=-5垂直y轴于点C(0,-5);作DF垂直直线y=-5于点F,作BE垂直直线y=-5于点E.
①求线段的长度:MC=______,MN=______;BE=______,BN=______;DF=______,DN=______;
②若P是这条抛物线上任意一点,猜想:该点到直线y=-5的距离PH与该点到N点的距离PN有怎样的数量关系?
(3)如图(2),将N点改为抛物线y=x2-4x+3对称轴上的一点,直线y=-5改为直线y=m(m<-1),已知对于抛物线y=x2-4x+3上的每一点,都有该点到直线y=m的距离等于该点到点N的距离,求m的值及点N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过______米时就会影响过往船只在桥下的顺利航行.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D.
(1)求h、k的值;
(2)判断△ACD的形状,并说明理由;
(3)在线段AC上是否存在点M,使△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+bx+c的部分图象;如图
(1)求该抛物线的表达式;
(2)写出该抛物线的顶点坐标;
(3)观察图象指出,当x分别取何值时,有y>0,y<0;
(4)若抛物线与x轴的交点分别为点A与点B(A在B左侧),在x轴上方的抛物线上是否存在点P,使S△PAB=8?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案