3£®Èçͼ£¬Å×ÎïÏßy=-x2+bx+cÓëxÖáÏཻÓÚA¡¢BÁ½µã£¬ÓëyÖáÏཻÓÚµãC£¬ÇÒµãBÓëµãCµÄ×ø±ê·Ö±ðΪB£¨3£¬0£©£®C£¨0£¬3£©£¬µãMÊÇÅ×ÎïÏߵĶ¥µã£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ¹Øϵʽ£»
£¨2£©µãPΪÏ߶ÎMBÉÏÒ»¸ö¶¯µã£¬¹ýµãP×÷PD¡ÍxÖáÓÚµãD£®ÈôOD=m£¬¡÷PCDµÄÃæ»ýΪS£¬ÊÔÅжÏSÓÐ×î´óÖµ»ò×îСֵ£¿²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÔÚMBÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷PCDΪֱ½ÇÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°ÑBµãºÍCµã×ø±ê´úÈëy=-x2+bx+cµÃµ½¹ØÓÚb¡¢cµÄ·½³Ì×飬Ȼºó½â·½³Ì×éÇó³öb¡¢c¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨2£©°Ñ£¨1£©ÖеÄÒ»°ãʽÅä³É¶¥µãʽ¿ÉµÃµ½M£¨1£¬4£©£¬ÉèÖ±ÏßBMµÄ½âÎöʽΪy=kx+n£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBMµÄ½âÎöʽ£¬ÔòP£¨m£¬-2m+6£©£¨1¡Üm£¼3£©£¬ÓÚÊǸù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½S=-m2+3m£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌ⣻
£¨3£©ÌÖÂÛ£º¡ÏPDC²»¿ÉÄÜΪ90¡ã£»µ±¡ÏDPC=90¡ãʱ£¬Ò×µÃ-2m+6=3£¬½â·½³ÌÇó³öm¼´¿ÉµÃµ½´ËʱPµã×ø±ê£»µ±¡ÏPCD=90¡ãʱ£¬ÀûÓù´¹É¶¨ÀíµÃµ½ºÍÁ½µã¼äµÄ¾àÀ빫ʽµÃµ½m2+£¨-2m+3£©2+32+m2=£¨-2m+6£©2£¬
È»ºó½â·½³ÌÇó³öÂú×ãÌõ¼þµÄmµÄÖµ¼´¿ÉµÃµ½´ËʱPµã×ø±ê£®

½â´ð ½â£º£¨1£©°ÑB£¨3£¬0£©£¬C£¨0£¬3£©´úÈëy=-x2+bx+cµÃ$\left\{\begin{array}{l}{-9+3b+c=0}\\{c=3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=-x2+2x+3£»
£¨2£©SÓÐ×î´óÖµ£®ÀíÓÉÈçÏ£º
¡ßy=-x2+2x+3=-£¨x-1£©2+4£¬
¡àM£¨1£¬4£©£¬
ÉèÖ±ÏßBMµÄ½âÎöʽΪy=kx+n£¬
°ÑB£¨3£¬0£©£¬M£¨1£¬4£©´úÈëµÃ$\left\{\begin{array}{l}{3k+n=0}\\{k+n=4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-2}\\{n=6}\end{array}\right.$£¬
¡àÖ±ÏßBMµÄ½âÎöʽΪy=-2x+6£¬
¡ßOD=m£¬
¡àP£¨m£¬-2m+6£©£¨1¡Üm£¼3£©£¬
¡àS=$\frac{1}{2}$•m•£¨-2m+6£©=-m2+3m=-£¨m-$\frac{3}{2}$£©2+$\frac{9}{4}$£¬
¡ß1¡Üm£¼3£¬
¡àµ±m=$\frac{3}{2}$ʱ£¬SÓÐ×î´óÖµ£¬×î´óֵΪ$\frac{9}{4}$£»
£¨3£©´æÔÚ£®
¡ÏPDC²»¿ÉÄÜΪ90¡ã£»
µ±¡ÏDPC=90¡ãʱ£¬ÔòPD=OC=3£¬¼´-2m+6=3£¬½âµÃm=$\frac{3}{2}$£¬´ËʱPµã×ø±êΪ£¨$\frac{3}{2}$£¬3£©£¬
µ±¡ÏPCD=90¡ãʱ£¬ÔòPC2+CD2=PD2£¬¼´m2+£¨-2m+3£©2+32+m2=£¨-2m+6£©2£¬
ÕûÀíµÃm2+6m-9=0£¬½âµÃm1=-3-3$\sqrt{2}$£¨ÉáÈ¥£©£¬m2=-3+3$\sqrt{2}$£¬
µ±m=-3+3$\sqrt{2}$ʱ£¬y=-2m+6=6-6$\sqrt{2}$+6=12-6$\sqrt{2}$£¬´ËʱPµã×ø±êΪ£¨-3+3$\sqrt{2}$£¬12-6$\sqrt{2}$£©£¬
×ÛÉÏËùÊö£¬µ±Pµã×ø±êΪ£¨$\frac{3}{2}$£¬3£©»ò£¨-3+3$\sqrt{2}$£¬12-6$\sqrt{2}$£©Ê±£¬¡÷PCDΪֱ½ÇÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýµÄÐÔÖʺÍÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽºÍÈý½ÇÐÎÃæ»ý¹«Ê½£»»áÔËÓ÷ÖÀàÌÖÂÛµÄ˼Ïë½â¾öÊýѧÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ò»¸öÕý·½ÌåµÄƽÃæÕ¹¿ªÍ¼ÈçͼËùʾ£¬½«ËüÕÛ³ÉÕý·½Ìåºó¡°½¨¡±×Ö¶ÔÃæµÄ×ÖÊÇ£¨¡¡¡¡£©
A£®ºÍB£®Ð³C£®ÏåD£®Ñô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÊµÊýa£¬b»¥ÎªÏà·´Êý£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a+b=0B£®ab=1C£®a¡Âb=-lD£®a£¾0£¬b£¼0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®$\sqrt{64}$µÄËãÊõƽ·½¸ùÊÇ£¨¡¡¡¡£©
A£®8B£®¡À8C£®$2\sqrt{2}$D£®¡À$2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ1£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+cÓëyÖáÏཻÓÚµãA£¨O£¬4£©£¬ÓëxÖáÏཻÓÚµãB£¨3£¬O£©¡¢C£¨1£¬O£©£¬¶¥µãΪM£®
£¨1£©ÇóÕâ¸öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôÅ×ÎïÏߵĶԳÆÖáÓëxÖáÏཻÓÚµãH£¬ÓëÖ±ÏßABÏཻÓÚµãN£¬ÇóÖ¤£ºËıßÐÎMBNCÊÇÁâÐΣ»
£¨3£©Èçͼ2£¬ÈôPÊÇÒÔD£¨-1£¬O£©ÎªÔ²ÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄ¡ÑDÉÏÒ»¶¯µã£¬Á¬½áPA¡¢PB£¬Çóʹ¡÷PABÃæ»ýÈ¡µÃ×î´óֵʱµÄµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®²»µÈʽ×é$\left\{\begin{array}{l}{x+1£¾0}\\{-2x+4£¼0}\end{array}\right.$µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®x£¾-1B£®x£¼2C£®x£¾2D£®-1£¼x£¼2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈçͼÊÇÒ»¸öÕý·½ÌåµÄƽÃæÕ¹¿ªÍ¼£¬ÄÇôÕâ¸öÕý·½Ìå¡°ÃÀ¡±×ֵĶÔÃæËù±êµÄ×ÖÊÇ£¨¡¡¡¡£©
A£®ÈÃB£®¸üC£®»îD£®Éú

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ËµÃ÷ÃüÌâ¡°µÈÑüÈý½ÇÐÎÑüÉϵĸßСÓÚÑü¡±ÊǼÙÃüÌâµÄ·´Àý¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®µÈÑüÖ±½ÇÈý½ÇÐÎB£®µÈ±ßÈý½ÇÐÎ
C£®º¬30¡ãµÄÖ±½ÇÈý½ÇÐÎD£®¶¥½ÇΪ45¡ãµÄµÈÑüÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¹ØÓÚ?ABCDµÄÐðÊö£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÈôAB¡ÍBC£¬Ôò?ABCDÊÇÁâÐÎB£®ÈôAC¡ÍBD£¬Ôò?ABCDÊÇÕý·½ÐÎ
C£®ÈôAC=BD£¬Ôò?ABCDÊǾØÐÎD£®ÈôAB=AD£¬Ôò?ABCDÊÇÕý·½ÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸