精英家教网 > 初中数学 > 题目详情
已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于  
3.

试题分析:先将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等,则可求抛物线的对称轴为:;又二次函数y=x2+4x+6的对称轴为直线x=-2,故可得出,化简得m+n=-2,所以当x=3(m+n+1)=3×(-2+1)=-3时,x2+4x+6=3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请写出一个图象为开口向下,并且与轴交于点的二次函数表达式     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)求使用回收净化设备后两年的利润总和.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线y=x2向左平移1个单位,所得的新抛物线的函数表达式为( )
A.y=x2+1B.y=(x+1) 2C.y=x2-1D.y=(x-1) 2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=-2(x-5)2+3的顶点坐标是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为米,面积为平方米.(注:的近似值取3)

(1)求出的函数关系式,并写出自变量的取值范围;
(2)当半径为何值时,扇形花坛的面积最大,并求面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是(  )
A.a<0 B.a﹣b+c<0
C.>1D.4ac﹣b2<﹣8a

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的最小值是           

查看答案和解析>>

同步练习册答案