精英家教网 > 初中数学 > 题目详情
14.下面有理数中,最大的数是(  )
A.$-\frac{1}{2}$B.0C.-1D.-3

分析 有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.

解答 解:根据有理数比较大小的方法,可得
-3<-1<-$\frac{1}{2}$<0,
∴各个有理数中,最大的数是0.
故选:B.

点评 此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.把一个骰子掷两次,观察向上一面的点数,它们的点数都是4的概率是$\frac{1}{36}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)解方程:1+$\frac{3x}{x-2}$=$\frac{6}{x-2}$; 
(2)解不等式组:$\left\{\begin{array}{l}x-1>2x\\ \frac{1}{2}x+3≤-1.\end{array}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为(  ) 
A.75°B.76°C.77°D.78°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).
(1)直接写出抛物线的解析式:y=-x2+2x+3;
(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围;
②当m为何值时,S有最大值,并求这个最大值;
③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,四边形OABC是面积为4的正方形,函数y1=$\frac{k}{x}$(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数y1=$\frac{k}{x}$(x>0)的图象交于点E、F,求线段EF所在直线的解析式y2=mx+n;
(3)当y2>y1时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简再求值.$({\frac{1}{x}+\frac{1}{y}})•\frac{6}{x+y}$,其中$x=\sqrt{3}+1,y=\sqrt{3}-1$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在平行四边形ABCD中,E为AD的中点,如果AF:BF=2:5,则$\frac{AG}{GC}$=$\frac{2}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于A,B两点,与y轴相交于C点且OA=OC,对称轴为x=1,有下列结论:①2a+b=0;②ac+b+1=0;③0<a<$\frac{1}{2}$;④当m≠1时,a+b>am2+bm,其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案