【题目】如图,是的直径,点在上,过点作的切线,延长到,使,连接,,与交于点.若的半径为,,则的外接圆的半径为________.
【答案】
【解析】
根据圆周角定理得∠ACB=90°,而BC=CD,则可判断△ABD为等腰三角形,得到AD=AB=6,所以AE=AD﹣DE=4,再根据切线的性质得OC⊥CM,接着证明OC∥AD,则CM⊥AD,所以∠AEC=90°,然后证明Rt△ACE∽Rt△ADC,利用相似比计算出AC=2,最后根据圆周角定理的推论可确定△AEC的外接圆的半径.
∵AB是⊙O的直径,∴∠ACB=90°,即AC⊥BD.
∵BC=CD,∴△ABD为等腰三角形,∴AD=AB=6,∴AE=AD﹣DE=6﹣2=4.
∵CM为切线,∴OC⊥CM.
∵OA=OB,CD=CB,∴OC为△BAD的中位线,∴OC∥AD,∴CM⊥AD,∴∠AEC=90°.
∵∠CAE=∠DAC,∴Rt△ACE∽Rt△ADC,∴=,即=,∴AC=2.
∵△AEC为直角三角形,AC为斜边,∴△AEC的外接圆的半径=AC=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别 | 成绩(分) | 频数(人数) | 频率 |
一 | 2 | 0.04 | |
二 | 10 | 0.2 | |
三 | 14 | b | |
四 | a | 0.32 | |
五 | 8 | 0.16 |
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中a= ,b= ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,AB=AD. ∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
图1 图2 图3
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为 ;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知≌,且、、、四点在同一直线上.
(1)在图1中,请你用无刻度的直尺作出线段的垂直平分线;
(2)在图2中,请你用无刻度的直尺作出线段的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=30°,∠B=60°,CF平分∠ACB.
(1)求∠ACE的度数.
(2)若CD⊥AB于点D,∠CDF=75°,求证:△CFD是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知中,厘米,、分别从点、点同时出发,沿三角形的边运动,已知点的速度是1厘米/秒的速度,点的速度是2厘米/秒,当点第一次到达点时,、同时停止运动.
(1)、同时运动几秒后,、两点重合?
(2)、同时运动几秒后,可得等边三角形?
(3)、在边上运动时,能否得到以为底边的等腰,如果存在,请求出此时、运动的时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象过两点.
(1)求直线的函数表达式
(2)直线交轴于点为直线上一动点
①求的最小值;
②是直线上任意一点,为直线上另一动点,若是以为直角边长的等腰直角三角形,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com