【题目】图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点.现测得AB=BE=ED=CD=15cm,经多次调试发现当点B,E所在直线垂直经过CD的中点F时(如图3所示)放置较平稳.
(1)求平稳放置时灯座DC与灯杆DE的夹角的大小;
(2)为保护视力,写字时眼睛离桌面的距离应保持在30cm,为防止台灯刺眼,点A离桌面的距离应不超过30cm,求台灯平稳放置时∠ABE的最大值.(结果精确到0.01°,参考数据: ≈1.732,sin7.70°≈0.134,cos82.30°≈0.134,可使用科学计算器)
【答案】(1)、60°;(2)、97.34°.
【解析】试题分析:(1)、由题意得:DF=CD=7.5cm,EF⊥CD,根据三角函数的定义即可得到结论;(2)、如图3,过A作AH⊥BE交EB的延长线于H,求得EF=15×=,根据cos∠ABH=≈0.134,根据得到结论.
试题解析:(1)、由题意得:DF=CD=cm,EF⊥CD, ∴cosD=, ∴∠D=60°;
答:平稳放置时灯座DC与灯杆DE的夹角是60°;
(2)、如图3,过A作AH⊥BE交EB的延长线于H, ∴HF=30, ∵EF=15×=,
∴BH=30﹣BE﹣EF=15﹣, ∴cos∠ABH=≈0.134, ∴∠ABH≈82.26°, ∴∠ABE=97.34°.
答:台灯平稳放置时∠ABE的最大值是97.34°.
科目:初中数学 来源: 题型:
【题目】【知识背景】在学习计算框图时,可以用“ ”表示数据输入、输出框;用“ ”表示数据处理和运算框;用“ ”表示数据判断框(根据条件决定执行两条路径中的某一条)
【尝试解决】
(1)①如图1,当输入数x=﹣2时,输出数y=;
②如图2,第一个“ ”内,应填; 第二个“ ”内,应填;
(2)①如图3,当输入数x=﹣1时,输出数y=;②如图4,当输出的值y=17,则输入的值x=;
(3)为鼓励节约用水,决定对用水实行“阶梯价”:当每月用水量不超过10吨时(含10吨),以3元/吨的价格收费;当每月用水量超过10吨时,超过部分以4元/吨的价格收费.请设计出一个“计算框图”,使得输入数为用水量x,输出数为水费y.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
(1)若商店计划销售完这批商品后能获利1 100元,请问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并指出获利最大的购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】记M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…,M(n)=
(1)填空:M(5)= , M(50) 是一个数(填“正”或“负”)
(2)计算:①2M(6)+M(7);②4M(7)+2M(8);
(3)直接写出2016M(n)+1008M(n+1)的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB=BC,∠ABC=90°,以AB为直径的⊙O交OC与点D,AD的延长线交BC于点E,过D作⊙O的切线交BC于点F.下列结论:①CD2=CE·CB;②4EF 2=ED ·EA;③∠OCB=∠EAB;④.其中正确的只有____________________.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com