精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AC是弦,点D是
BC
的中点,PD切⊙O于点D.
(1)求证:DP⊥AP;
(2)若PD=12,PC=8,求⊙O的半径R的长.
(1)证明:连接BC、OD,相交于点E;
∵点D是
BC
的中点,
∴OD⊥BC,
∴∠CED=90°,
∵AB是⊙O的直径,
∵∠ACB=90°,
∵PD为⊙O的切线,
∴OD⊥PD,
∴∠PDE=90°
∴四边形PDEC为矩形,
∴DP⊥AP;

(2)由(1)可知四边形PDEC为矩形,
∴PD=CE=12,
∴BC=2CE=24;
∵PD2=PC•PA,
∴PA=
PD2
PC
=
122
8
=18,
∴AC=PA-PC=18-8=10;
∵AB2=AC2+BC2=102+242=676,
∴AB=26,
∴⊙O的半径R=13.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的直径AC=13,弦BC=12.过点A作直线MN,使∠BAM=
1
2
∠AOB.
(1)求证:MN是⊙O的切线;
(2)延长CB交MN于点D,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△AOB中,OA=OB=3
2
,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E.
(1)求证:AE切⊙O于点D;
(2)若AC=2,且AC、AD的长时关于x的方程x2-kx+4
5
=0的两根,求线段EB的长;
(3)当点O位于线段AB何处时,△ODC恰好是等边三角形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB是⊙O的切线,切点分别是A、B,点C是⊙O上异与点A、B的点,如果∠P=60°,那么∠ACB等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两圆外切,半径为4cm和9cm,则两圆的一条外公切线的长等于______cm?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O和⊙O′都经过点A、B,点P在BA延长线上,过P作⊙O的割线PCD交⊙O于C、D两点,作⊙O′的切线PE切⊙O′于点E.若PC=4,CD=8,⊙O的半径为5.
(1)求PE的长;
(2)求△COD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是等腰梯形,ADBC,BC=2,以线段BC的中点O为圆心,以OB为半径作圆,连结OA交⊙O于点M
(1)若∠ABO=120°,AO是∠BAD的平分线,求
BM
的长;
(2)若点E是线段AD的中点,AE=
3
,OA=2,求证:直线AD与⊙O相切.

查看答案和解析>>

同步练习册答案