精英家教网 > 初中数学 > 题目详情

【题目】将一块含30°角的直角三角板OAB和一块等腰直角三角板ODC按如图的方式放置在平面直角坐标系中.已知C、B两点分别在x轴和y轴上,∠ABO=D=90°,OB=OC,AB=3.

(1)求边OC的长.

(2)将直角三角板OAB绕点顺时针方向旋转,使OA落在x轴上的OA′位置,求图中阴影部分的面积.

【答案】(1)3;(2) 6π﹣

【解析】

(1)先利用含30度的直角三角形三边的关系求出OB,然后利用OC=OB得到OC的长;

(2)先计算出OC的长,然后根据扇形面积公式,利用S阴影部分=S扇形AOA′-SOCD进行即可.

(1)在RtOAB中,∵∠AOB=30°,

OB=AB=3

OC=OB=3

(2)在RtOAB中,∵∠AOB=30°,

AB=2AB=6,

∵△ODC为等腰直角三角形,

OD=CD=OC=

S阴影部分=S扇形AOA′﹣SOCD==6π﹣ .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.

(1)求wx之间的函数关系式;

(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?

(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想买得快.那么销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB17BC21AC10,动点P从点C出发,沿着CB运动,速度为每秒3个单位,到达点B时运动停止,设运动时间为t秒,请解答下列问题:

1)求BC上的高;

2)当t为何值时,ACP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点Ax轴上,点B在直线x=3上,直线x=3x轴交于点C

(1)求抛物线的解析式;

(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.

①当t为何值时,矩形PQNM的面积最小?并求出最小面积;

②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象过点30)、(-10

1)求二次函数的解析式;

2)如图,二次函数的图象与轴交于点,二次函数图象的对称轴与直线交于点,求点的坐标;

3)在第一象限内的抛物线上有一点,当的面积最大时,求点的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将某种商品的售价从原来的每件元经两次调价后调至每件元.

(1)若该商店两次调价的降价率相同,求这个降价率;

(2)经调查,该商品每降价元,即可多销售件.若该商品原来每月可销售件,那么两次调价后,每月可销售该商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.

1)求点A的坐标;

2)若直线ykxk0)与线段AB有交点,求k的取值范围;

3)若点Cx轴正半轴上,以线段AC为边在第一象限内作等边ACD,求直线BD的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.

(1)用树状图或列表法举出所有可能出现的结果;

(2)求两次摸出的球都是编号为3的球的概率.

查看答案和解析>>

同步练习册答案