精英家教网 > 初中数学 > 题目详情
已知二次函数f(x)=x2+px+q,且方程f(x)=0与f(2x)=0有相同的非零实根.
(1)求
qp2
的值.(2)若f(1)=28,解方程f(x)=0.
分析:(1)首先根据题意写出二次函数f(x)=x2+px+q=0、f(2x)=(2x)2+p(2x)+q=0的.再利用加减消元法、代入法抵消掉x即可求出
q
p2
的值.
(2)根据f(1)=28可列出1+p+q=28,再根据(1)式可知p、q的关系,联立可解出p、q的值.代入方程f(x)=0,即可取出x的具体解.
解答:解:(1)设f(x)=0的两根为x1、x2,且x1≤x2
则f(x)=0,即x2+px+q=0              ①
f(2x)=0,即(2x)2+p(2x)+q=0      ②
①×4-②得  2px+3q=0,即 x=-
3q
2p

②-①×2得  2x2-q=0,即 x2=
q
2

将③代入④得(-
3q
2p
)
2
=
q
2
,即
q
p2
=
2
9

(2)∵f(1)=28,即:1+p+q=28    ⑤
由(1)知
q
p2
=
2
9

联立两方程求得  p=9,q=18,或p=-
27
2
,q=
81
2

当p=9,q=18时,f(x)=x2+9x+18
f(x)=0,即x2+9x+18=0
解得x1=-3,x2=-6;
当p=-
27
2
,q=
81
2
时,f(x)=x2-
27
2
x+
81
2

f(x)=0,即x2-
27
2
x+
81
2
=0

解得x1=
9
2
,x2=9
故f(0)的两组解是
x1=-3
x2=-6
x1=
9
2
x2=9
点评:本题是一道二次函数的综合题目.解决本题的关键是根据方程f(x)=0与f(2x)=0有相同的非零实根,确定出p、q的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是(  )
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象经过点(0,3),顶点坐标为(1,4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;
③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根;⑤2a+b=0.其中,正确的说法有
②④⑤
②④⑤
.(请写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,已知A点坐标为(-1,0),且对称轴为直线x=2,则B点坐标为
(5,0)
(5,0)

查看答案和解析>>

同步练习册答案