分析 根据勾股定理分别求出各边长,计算即可.
解答 解:由勾股定理得,AD=$\sqrt{{3}^{2}+{4}^{2}}$=5,
AB=$\sqrt{{5}^{2}+{1}^{2}}$=$\sqrt{26}$,
BC=$\sqrt{{8}^{2}+{6}^{2}}$=10,
CD=$\sqrt{{6}^{2}+{3}^{2}}$=3$\sqrt{5}$,
∴四边形ABCD的周长=AD+CD+BC+AB=15+3$\sqrt{5}$+$\sqrt{26}$.
点评 本题考查的是勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com