精英家教网 > 初中数学 > 题目详情
13.解下列方程:
(1)$\frac{3x-1}{x-2}=\frac{5}{x-2}$
(2)$\frac{1}{{{x^2}-1}}-\frac{2}{x+1}+\frac{3}{1-x}=0$.

分析 两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:(1)去分母得:3x-1=5,
解得:x=2,
经检验x=2是增根,分式方程无解;
(2)去分母得:1-2x+2-3x-3=0,
解得:x=0,
经检验x=0是分式方程的解.

点评 此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.【阅读】在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则线段PQ的中点坐标为($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$).(不必说理,可直接运用).
【理解】若点P(3,4),Q(-3,-6),则线段PQ的中点坐标是(0,-1).
【运用】如图,已知△A′B′C′是由△ABC绕原点O旋转180°后,再向右平移3个单位而得到的,其中A(-2,-5),B(-1,-2),C(-3,-1).
(1)说明△ABC与△A′B′C′称中心对称,并求出对称中心的坐标.
(2)探究该平面内是否存在点D,使得以A、B、C、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各式从左向右的变形正确的是(  )
A.$\frac{x}{y}$=$\frac{x-2}{y-2}$B.$\frac{x}{y}$=$\frac{-2x}{-2y}$C.$\frac{x}{y}$=$\frac{2+x}{2+y}$D.$\frac{x}{y}$=$\frac{{x}^{2}}{{y}^{2}}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知:-2xmy3与$\frac{1}{2}$x1+nym+n是同类项,则它们的积是-x4y6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列方程是一元二次方程的是(  )
A.x2+$\frac{1}{{x}^{2}}$=3B.x2+x=yC.(x-4)(x+2)=3D.3x-2y=0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在式子-3<0,x≥2,x=a,x2-2x,x≠3,x+1>y中,是不等式的有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若一个二元一次方程的一个解为$\left\{{\begin{array}{l}{x=2}\\{y=-1}\end{array}}\right.$,则这个方程可以是(  )
A.x+y=1B.x-y=1C.y-x=1D.x+2y=1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.二次函数y=x2-2x-3与x轴交于A、B两点,则AB=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点,点A在点B的左边,与y轴交于点C,顶点为D,若以BD为直径的⊙M经过点C.

(1)请直接写出C、D两点的坐标(用含a的代数式表示);
(2)求抛物线的函数表达式;
(3)在抛物线上是否存在点E,使∠EDB=∠CBD?若存在,请求出所有满足条件的点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案