精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD,O是正方形中心,P为OA上一点,PB⊥PE交CD于E.
(1)求证:PB=PE;
(2)试写出PA,PC,CE三者之间的数量关系,并说明理由.
(1)证明:过点P作PF⊥BC于点F,PG⊥CD与G,
∴∠PFC=∠PGC=90°.
∵四边形ABCD是正方形,
∴∠DCB=90°,
∴四边形PFCG是矩形.
∵AC为正方形ABCD的对角线,
∴AC是∠BCD的角平分线.
∴PF=PG.
∴四边形PFCG是正方形.
∴PF=PG.∠FPG=90°
∵PB⊥PE,
∴∠BPE=90°,
∴∠FPG=∠BPE,
∴∠FPG-∠FPE=∠BPE-∠FPE,
∴∠2=∠1.
∵在△PGE和△PFB中,
∠2=∠1
PG=PF
∠PGE=∠PFB

∴△PGE≌△PFB(ASA),
∴PB=PE;

(2)PC=PA+
2
CE.
将△PEC绕点P顺时针旋转180°,连结E′A,E′B,BE.
∴PC=PC′,∠C=∠PCE=45°,C′E′=CE,PE′PE,
∴C′E′CD.
∵ABCD,
∴C′EAB.
∵PE′=PB=PE,
∴∠E′BE=90°,BE′=BE,
∴∠3+∠ABE=∠4+∠ABE,
∴∠3=∠4.
∵在△AE′B和△CEB中
BE′=BE
∠3=∠4
AB=CB

∴△AE′B≌△CEB(SAS),
∴∠E′AB=∠BCE=90°.
∵C′EAB.
∴∠C′E′A=90°,
∴AC′=
2
C′E′=
2
CE.
∵PC′=PA+AC′,
∴PC=PA+
2
CE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,△ABC是一块锐角三角形余料,边BC=12cm,高AD=6cm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,则正方形的边长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,点D、E、F分别在BC、AB、AC上,且DEAC,DFAB.
(1)如果∠BAC=90°,那么四边形AEDF是______形;
(2)若四边形AEDF是正方形,则△ABC中需满足______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;
求证:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.过点F作FM垂直于DC,交直线DC于M.
(1)如果DG=2,那么FM=______(画出对应图形会变得更简单!)
(2)当E,G在正方形边上移动时,猜测FM的值是否发生改变,并证明你的结论.
(3)设DG=x,用含x的代数式表示△FCG的面积S;判断S能否等于1,若能求x的值,若不能请说明理由.
(温馨提示:不要忘记顶点E,G,H分别在正方形ABCD边AB,CD,DA上哦!)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形的边长为4,E是CD上一点,且DE=1,△BCE旋转与△DCF重合.
(1)指出旋转中心与旋转角度;
(2)求CF的长;
(3)求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABCD是正方形,点G是线段BC上任意一点(不与点B、C重合),DE垂直于直线AG于E,BFDE,交AG于F.
(1)求证:AF-BF=EF;
(2)当点G在BC延长线上时(备用图一),作出对应图形,问:线段AF、BF、EF之间有什么关系(只写结论,不要求证明)?
(3)当点G在CB延长线上时(备用图二),作出对应图形,问:线段AF、BF、EF之间又有什么关系(只写结论,不要求证明)?

查看答案和解析>>

同步练习册答案