精英家教网 > 初中数学 > 题目详情

如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.

(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.

(1)证明见解析;(2)当AP=2时, △ADQ的面积的面积是正方形ABCD面积的;(3)当CP=4-4时,△ADQ是等腰三角形.

解析试题分析:(1)正方形的对角线与边的夹角是45°,在正方形ABCD中,无论点P运动到AB上何处时,都有AD=AB,∠DAQ=∠BAQ,AQ=AQ,∴△ADQ≌△ABQ.(2)△ADQ的面积恰好是正方形ABCD面积的时,过点Q作QE⊥AD于E,QF⊥AB于F,则QE =QF,AD×QE=S正方形ABCD=,∴QE=,由△DEQ∽△DAP得,
解得AP=2,∴AP=2时,△ADQ的面积的面积是正方形ABCD面积的.(3)若△ADQ是等腰三角形,则有QD=QA或DA=DQ或AQ=AD,①当点P运动到与点B重合时,由四边形ABCD是正方形知QD=QA,此时△ADQ是等腰三角形,②当点P与点C重合时,点Q与点C也重合,此时DA=DQ,△ADQ是等腰三角形.③如图,设点P在BC边上运动到CP=x时,有AD=AQ,∵AD∥BC,∴∠ADQ=∠CPQ,又∵∠AQD=∠CQP,∠ADQ=∠AQD,∴∠CQP=∠CPQ,∴CQ=CP=x,∵AC=,AQ=AD=4,∴z=CQ=AC-AQ=4-4,即当CP=4-4时,△ADQ是等腰三角形.

试题解析:(1)证明:在正方形ABCD中,无论点P运动到AB上何处时,都有AD=AB,∠DAQ=∠BAQ,AQ=AQ,
∴△ADQ≌△ABQ.
(2)解:△ADQ的面积恰好是正方形ABCD面积的时,
过点Q作QE⊥AD于E,QF⊥AB于F,
则QE=QF,
AD×QE=S正方形ABCD=,
∴QE=,
由△DEQ∽△DAP得,
解得AP=2,
∴AP=2时,△ADQ的面积的面积是正方形ABCD面积的.
(3)若△ADQ是等腰三角形,则有QD=QA或DA=DQ或AQ=AD,
①当点P运动到与点B重合时,由四边形ABCD是正方形知QD=QA,
此时△ADQ是等腰三角形,
②当点P与点C重合时,点Q与点C也重合,
此时DA=DQ,△ADQ是等腰三角形.
③解:如图,设点P在BC边上运动到CP=x时,有AD=AQ,

∵AD∥BC,
∴∠ADQ=∠CPQ,
又∵∠AQD=∠CQP,∠ADQ=∠AQD,
∴∠CQP=∠CPQ,
∴CQ=CP=x,
∵AC=,AQ=AD=4,
∴z=CQ=AC-AQ=4-4,
即当CP=4-4时,△ADQ是等腰三角形.
考点:1.正方形;2.三角形的相似.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(),解答下列问题:

(1)当为何值时,PQ∥BC?
(2)设△AQP的面积为y(),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.

(1)求证:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,正△ABC中,∠ADE=60°,

(1)求证:△ABD∽△DCE;
(2)若BD=2,CD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试说明△ABC∽△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,四边形ABCD中,对角线AC与BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构成命题.

(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;
(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)

查看答案和解析>>

同步练习册答案