精英家教网 > 初中数学 > 题目详情

已知:如图,AB是⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=2,那么AB的长为


  1. A.
    4
  2. B.
    6
  3. C.
    8
  4. D.
    10
C
分析:作辅助线,连接OA,在Rt△AOD中,根据勾股定理可将AD的长求出,再由垂径定理可知AB=2AD.
解答:解:连接OA,在Rt△ODA中,OD2=AD2+OD2,即52=(5-2)2+AD2,解得:AD=4.
∵OC⊥AB,
∴AB=2AD=8.
故选C.
点评:本题综合考查垂径定理和勾股定理的性质和求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案