精英家教网 > 初中数学 > 题目详情
5.在$\frac{1}{x}$,$\frac{m+n}{m}$,$\frac{a{b}^{2}}{5}$,-0.7xy+y3,$\frac{b-c}{5+a}$,$\frac{3{x}^{2}}{π}$中,分式有(  )
A.2个B.3个C.4个D.5个

分析 判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.

解答 解:在$\frac{1}{x}$,$\frac{m+n}{m}$,$\frac{a{b}^{2}}{5}$,-0.7xy+y3,$\frac{b-c}{5+a}$,$\frac{3{x}^{2}}{π}$中,分式有$\frac{1}{x}$,$\frac{m+n}{m}$,$\frac{b-c}{5+a}$,一共3个.
故选:B.

点评 本题主要考查分式的定义,分母中含有字母则是分式,如果不含有字母则不是分式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,已知抛物线y=-x2+4x+5与x轴的两个交点为A、B,与y轴交于点C.
(1)求A、B、C三点的坐标?
(2)求该二次函数的对称轴和顶点坐标?
(3)若坐标平面内的点M,使得以点M和三点A、B、C为顶点的四边形是平行四边形,求点M的坐标?(直接写出M的坐标)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,扇形OAB的圆心角为90°,点C,D是弧AB的三等分点,半径OC,OD分别与弦AB交于点E,F,下列说法错误的是(  )
A.AE=EF=FBB.AC=CD=DBC.EC=FDD.∠DFB=75°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,△DEF是由△ABC平移得到的,对于结论:①BC=EF;②AB∥DE;③△ABC≌△DEF;④四边形ACFD为平行四边形,正确的是(  )
A.①②③④B.①②③C.①③④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在△ABC中,∠ACB=90°,AC=BC,D是AB的中点,点E是边AC上的一动点,点F是边BC上的一动点.
(1)若AE=CF,试证明DE=DF;
(2)在点E、点F的运动过程中,若DE⊥DF,试判断DE与DF是否一定相等?并加以说明.
(3)在(2)的条件下,若AC=2,四边形ECFD的面积是一个定值吗?若不是,请说明理由,若是,请直接写出它的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列图形属于棱柱的有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若$\frac{a-b}{a}$=$\frac{2}{5}$,则$\frac{a}{b}$=$\frac{5}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,平面直角坐标系中,直线AB:y=-$\frac{1}{3}$x+b交y轴于点A(0,1),交x轴于点B,过点E(1,0)作x轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n.
(1)求直线AB的表达式;
(2)求△ABP的面积(用含n的代数式表示);
(3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.

查看答案和解析>>

同步练习册答案