【题目】有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形ABCD中,∠B= ∠D,∠C= ∠A,求∠B与∠C的度数之和;
(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.
求证:四边形DBCF是半对角四边形;
(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.
【答案】
(1)
解:在半对角四边形ABCD中,∠B=∠D,∠C=∠A.
∵∠A+∠B+∠C+∠D=360°,
∴3∠B+3∠C=360°.
∴∠B+∠C=120°.
即∠B与∠C的度数之和120°.
(2)
证明:在△BED和△BEO中,
.
∴△BED≌△BEO(SAS).
∴∠BDE=∠BOE.
又∵∠BCF=∠BOE.
∴∠BCF=∠BDE.
如下图,连结OC.
设∠EAF=.则∠AFE=2∠EAF=2.
∴∠EFC=180°-∠AFE=180°-2.
∵OA=OC,
∴∠OAC=∠OCA=.
∴∠AOC=180°-∠OAC-∠OCA=180°-2.
∴∠ABC=∠AOC=∠EFC.
∴四边形DBCF是半对角四边形.
(3)
解:如下图,作过点OM⊥BC于点M.
∵四边形DBCF是半对角四边形,
∴∠ABC+∠ACB=120°.
∴∠BAC=60°.
∴∠BOC=2∠BAC=120°.
∵OB=OC
∴∠OBC=∠OCB=30°.
∴BC=2BM=BO=BD.
∵DG⊥OB,
∴∠HGB=∠BAC=60°.
∵∠DBG=∠CBA,
∴△DBG△CBA.
∴ =2=.
∵DH=BG,BG=2HG.
∴DG=3HG.
∴=
∴=.
【解析】(1)在半对角四边形ABCD中,∠B=∠D,∠C=∠A;根据四边形的内角和为360°,得出∠B与∠C的度数之和.
(2)如图连接OC,根据条件先证△BED≌△BEO,再根据全等三角形的性质得出∠BCF=∠BOE=∠BDE;设∠EAF=.则∠AFE=2∠EAF=2得出∠EFC=180°-∠AFE=180°-2;再根据OA=OC得出∠OAC=∠OCA= , 根据三角形内角和得出∠AOC=180°-∠OAC-∠OCA=180°-2;从而得证.
(3)如下图,作过点OM⊥BC于点M,由四边形DBCF是半对角四边形,得出∠ABC+∠ACB=120°,∠BAC=60°.∠BOC=2∠BAC=120°;再由OB=OC,得出∠OBC=∠OCB=30°.BC=2BM=BO=BD;根据△DBG~△CBA得出答案.
【考点精析】掌握三角形的内角和外角和等腰三角形的性质是解答本题的根本,需要知道三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;等腰三角形的两个底角相等(简称:等边对等角).
科目:初中数学 来源: 题型:
【题目】在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).
(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)
(1)若点C与点A关于原点O对称,则点C的坐标为 ;
(2)将点A向右平移5个单位得到点D,则点D的坐标为 ;
(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:
(1)如图①,在中,点、、分别在边、、上,且,若,求的度数.请将下面的解答过程补充完整,并填空.
(1)解:
,
(两直线平行,内错角相等).
,
(___________________________________).
(__________________).
.
应用:
(2)如图②,在中,点、、分别在边、、的延长线上,且,,若,求的大小.(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:
我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.
已知三角板中,,长方形中,.
问题初探:
(1)如图(1),若将三角板的顶点放在长方形的边上,与相交于点,于点,求的度数.
过点作,则有,从而得,从而可以求得的度数.
由分析得,请你直接写出:的度数为____________,的度数为___________.
类比再探:
(2)若将三角板按图(2)所示方式摆放(与不垂直),请你猜想写出与的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 7 | 9 | 6 | 8 | 20 | 10 |
(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com