【题目】如图,、分别为数轴上的两点,点对应的数为-5,点对应的数为55.现有一动点以6个单位/秒的速度从点出发,同时另一动点恰好以4个单位/秒的速度从点出发:
(1)若向左运动,同时向右运动,在数轴上的点相遇,求点对应的数.
(2)若向左运动,同时向左运动,在数轴上的点相遇,求点对应的数.
(3)若向左运动,同时向右运动,当与之间的距离为20个单位长度时,求此时点所对应的数.
【答案】(1)19;(2)-125;(3)11.
【解析】
(1)首先求出A、B两点之间的距离,然后求出相遇时间,再求出点Q所走的路程,根据左减右加的原则,可求出相遇地点所对应的数;
(2)此题是追及问题,先求出P追上Q所需的时间,然后求出Q所走的路程,根据左减右加的原则,可求出点D所对应的数;
(3)首先设其运动时间为t,根据题意列出关系式,解得t,然后求出Q点运动的路程,即可求出Q此时对应的数.
(1)∵点对应的数为-5,点对应的数为55
∴A、B两点之间的距离是55-(-5)=60
它们相遇的时间是60÷(6+4)=6
即相同时间Q点运动路程是4×6=24
即从数-5向右运动24个单位到19
即C点对应的数是19;
(2)P点追到Q点的时间是60÷(6-4)=30
即此时Q点运动的路程是4×30=120
即从数-5向左运动120个单位到数-125
即D点对应的数为-125.
(3)设其运动时间为t,则
4t+6t+20=60
解得t=4
即Q点运动的路程是4×4=16
即Q点从数-5向右运动16个单位到数11
即Q点此时对应的数是11.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).
(1)数轴上点B对应的数是 ,点B到点A的距离是 ;
(2)经过几秒,原点O是线段MN的中点?
(3)经过几秒,点M,N分别到点B的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为1,AC,BD是对角线。将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG。则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正确的结论是( )
A. ①②③④ B. ①②③ C. ①② D. ②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:数和形是数学的两个主要研究对象,我们经常运用数形结合,树形转化的方法解决一些数学问题,小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=,他还利用图2证明了线段P1P2的中点P(x,y),P的坐标公式:x=,y=.
启发应用:
如图3:在平面直角坐标系中,已知A(8,0),B(0,6),C(1,7),⊙M经过原点O及点A,B,
(1)求⊙M的半径及圆心M的坐标;
(2)判断点C与⊙M的位置关系,并说明理由;
(3)若∠BOA的平分线交AB于点N,交⊙M于点E,分别求出OE的表达式y1,过点M的反比例函数的表达式y2,并根据图象,当y2>y1>0时,请直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点A表示﹣3,点B表示5,点C表示m.
(1)若点A与点B同时出发沿数轴负方向运动,两点在点C处相遇,点A的运动速度为1单位长度/秒,点B的运动速度为3单位长度/秒,求m.
(2)若A,C两点之间的距离为2,求B、C两点之间的距离.
(3)若m=0,在数轴上是否存在一点P,使P到A、B、C的距离和等于12?若存在,请求点P对应的数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD的边长为4厘米,E为AD边的中点,F为AB边上一点,动点P从点B出发,沿B→C→D→E,向终点E以每秒a厘米的速度运动,设运动时间为t秒,△PBF的面积记为S. S与t的部分函数图象如图2所示,已知点M(1,)、N(5,6)在S与t的函数图象上.
(1)求线段BF的长及a的值;
(2)写出S与t的函数关系式,并补全该函数图象;
(3)当t为多少时,△PBF的面积S为4.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上两点A,B对应的有理数分别为a,b,则A.B两点之间的距离是AB=或AB=。回答下列问题:
(1)数轴上表示2和9的两点之间的距离是 ;表示-3和8的两点之间的距离是 ;
(2)如果x和-2在数轴上对应点的距离是5,那么x= ;
(3)数轴上表示a和-3的两点之间的距离表示为 ;
(4)若数轴上表示a的点位于-3与2之间,则 ;
(5)当点P到-2和3对应的点A、B的距离之和为7时,则点P对应的数是 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l的解析式为y=-x+,与x轴,y轴分别交于A,B两点,双曲线与直线l交于E,F两点,点E的横坐标为1.
(1)求k的值及F点的坐标;
(2)连接OE,OF,求△EOF的面积;
(3)若点P是EF下方双曲线上的动点(不与E,F重合),过点P作x轴,y轴的垂线,分别交直线l于点M,N,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com