已知:Rt△OAB在直角坐标系中的位置如图所示,P(3,4)为OB的中点,点C为折线OAB上的动点,线段PC把Rt△OAB分割成两部分. 问:点C在什么位置时,分割得到的三角形与Rt△OAB相似?(注:在图上画出所有符合要求的线段PC,并写出相应的点C的坐标).
C1(3,0),C2(6,4),C3(6,),图形见解析.
解析试题分析:按照公共锐角进行分类,可以分为两种情况:当∠BOA为公共锐角时,只存在∠PCO为直角的情况;当∠B为公共锐角时,存在∠PCB和∠BPC为直角两种情况.
试题解析:过P作PC1⊥OA,垂足是C1,
则△OC1P∽△OAB.
点C1坐标是(3,0).
过P作PC2⊥AB,垂足是C2,
则△PC2B∽△OAB.
点C2坐标是(6,4).
过P作PC3⊥OB,垂足是P(如图),
则△C3PB∽△OAB,
∴.
易知OB=10,BP=5,BA=8,
∴.
∴C3(6,).
符合要求的点C有三个,其连线段分别是PC1,PC2,PC3(如图).
考点:相似变换.
科目:初中数学 来源: 题型:解答题
如图,在?ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.
(1)求证:△ABE≌△NCE;
(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知矩形OABC的顶点O(0,0)、A(4,0)、B(4,-3).动点P从O出发,以每秒1个单位的速度,沿射线OB方向运动.设运动时间为t秒.
(1)求P点的坐标(用含t的代数式表示);
(2)如图,以P为一顶点的正方形PQMN的边长为2,且边PQ⊥y轴.设正方形PQMN与矩形OABC的公共部分面积为S,当正方形PQMN与矩形OABC无公共部分时,运动停止.
①当t<4时,求S与t之间的函数关系式;
②当t>4时,设直线MQ、MN分别交矩形OABC的边BC、AB于D、E,问:是否存在这样的t,使得△PDE为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A?B?C?D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)如果点P、Q保持原速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等?若能,求出所有符合条件的t的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
提出问题:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,
因为△EGH与△EBH高相等,底的比是1:2,
所以S△EGH=S△EBH
因为△EFH与△DEH高相等,底的比是1:2,
所以S△EFH=S△DEH
所以S△EGH+S△EFH=S△EBH +S△DEH
即S四边形EFHG=S四边形EBHD
连接BD,
因为△DBE与△ABD高相等,底的比是2:3,
所以S△DBE=S△ABD
因为△BDH与△BCD高相等,底的比是2:3,
所以S△BDH=S△BCD
所以S△DBE +S△BDH=S△ABD+S△BCD =(S△ABD+S△BCD)
=S四边形ABCD
即S四边形EBHD=S四边形ABCD
所以S四边形EFHG=S四边形EBHD=×S四边形ABCD=S四边形ABCD
(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢
验证你的猜想:
(2)问题解决:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)
那么S四边形EFHG与S四边形ABCD之间的关系为: (不必写出求解过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com