精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形网格中,的大小关系是______.

【答案】

【解析】

由平行线的性质可知:∠CBD=∠BDE,∠EDF=∠DFG,然后根据锐角三角形函数的定义可知:tan∠ABC= ,tan∠EDF=,tan∠BDE=tan∠GFH= ,从而可判定出∠ABC<∠EDF,∠BDE=∠GFH.然后即可比较它们的大小.

解:如图所示:

根据图形可知:
∠CBD=∠BDE,tan∠ABC=

,tan∠EDF=
∴∠ABC<∠EDF
∴∠ABC+∠CBD<∠EDF+∠BDE,即∠1<∠2.
根据图形可知:∠EDF=∠DFG,tan∠BDE=,tan∠GFH=
∴∠BDE=∠GFH.
∴∠EDF+∠BDE=∠DFG+∠GFH,即:∠2=∠3.
故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形网格中,A17)、B55)、C75)、D51).

1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BECD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;

2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPB分别切圆OAB两点,C为劣弧AB上一点,∠APB=40°,则∠ACB= ).

A.70°B.80°C.110°D.140°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在梯形ABCD中,AB//CDAB=12CD=7,点E在边AD上,,过点EEF//AB交边BC于点F.

1)求线段EF的长;

2)设,联结AF,请用向量表示向量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:

(1)求n的值;

(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;

(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,ADBC,∠ADC=90AD= 2BC= 4.AB为直径作⊙O,交边DCEF两点.

(1)求证:DE=CF.

(2)求直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y1=的图象与一次函数y2=的图象交于点A,B,点B的横坐标实数4,点P(1,m)在反比例函数y1=的图象上.

(1)求反比例函数的表达式;

(2)观察图象回答:当x为何范围时,y1>y2

(3)求PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的方程(k-1)x2+2kx+2=0

(1求证:无论k为何值,方程总有实数根。

(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值。若不能,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺.人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山位于树的西面.山高为未知数,山与树相距53里,树高95.人站在离树3里的地方,观察到树梢恰好与山峰处在同一条直线上,人眼离地7.则山高的长为(结果保留到整数,1=10尺)( )

A.162B.163C.164D.165

查看答案和解析>>

同步练习册答案