精英家教网 > 初中数学 > 题目详情
20.为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两幅统计图中的B补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

分析 (1)用A的人数除以所占的百分比,即可求出调查的学生数;
(2)用抽查的总人数减去A、C、D的人数,求出喜欢“立定跳远”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;
(3)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可.

解答 解:(1)根据题意,得:15÷10%=150(人),
答:在这项调查中,共调查了150名学生;

(2)本次调查中喜欢“立定跳远”的学生人数为:150-15-60-30=45(人),
“立定跳远”的学生占被调查学生百分比为:$\frac{45}{150}$×100%=30%,
补全图形如下:


(3)用A表示男生,B表示女生,画图如下:

共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是$\frac{8}{20}$=$\frac{2}{5}$.

点评 本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:
(1)药物燃烧后y与x的函数关系式为y=$\frac{48}{x}$;
(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;
(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为$\sqrt{3}$的线段的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知关于x的二次函数y=x2+(2k-1)x+k2-1,且关于x的方程x2+(2k-1)x+k2-1=0的两根的平方和等于9.
(1)求函数的解析式.
(2)设这个二次函数的图象与x轴从左至右分别交于AB两点,在图7所给的平面直角坐标系中画出函数的大致图象,点M是位于对称轴右侧函数图象上的一点,且锐角△AMB的面积的等于3,求点M的坐标.
(3)在(2)的条件下,过点M及点E($\frac{8}{3}$,0)的直线与抛物线交于点P,求证:△AMP是直角三角形,并求△AMP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片上所标的数值分别为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x、y分别作为点A的横坐标、纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况;
(2)求点A在反比例函数y=-$\frac{6}{x}$图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在平面直角坐标系中,已知点A(0,-3),点B(m,1),C(m+4,1);
(1)△ABC的面积;
(2)若点P(0,m)在x轴下方,是否存在m使得∠BPC=90°?若存在,求n的取值;若不存在,说明理由;
(3)若⊙Q过点B、C且与过A平行于x轴的直线相切,求⊙Q的半径;
(4)直接写出sin∠BAC的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.某林业部门要考察某种幼树在一定条件下的移植成活率,在同样的条件下对这种幼树进行大量移植,并统计成活情况,记录如下(其中频率结果保留小数点后三位)
 移植总数(n) 10 50 270 400 750 1500 35007000  9000
 成活数(m) 8 47 235 369 662 1335 3203 6335 8118
 成活的频率$\frac{m}{n}$ 0.800 0.940 0.870 0.923 0.883 0.890 0.915 0.905 0.902
由此可以估计幼树移植成活的概率为0.892.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知A、B是反比例函数$y=\frac{1}{x}$图象上关于原点O对称的两点,过点A且平行y轴的直线与过点B且平行x轴的直线交于点C,则△ABC的面积为2.

查看答案和解析>>

同步练习册答案