精英家教网 > 初中数学 > 题目详情
16.2014年初,埃博拉病毒疯狂袭击西非国家,随之蔓延至美国、西班牙等地,人们谈“埃”色变,2014所10月6日世界卫生组织发布公报说,埃博拉病毒(EBV)属丝状病毒科,长度为0.00000097米,将0.00000097用科学记数法表示为(  )
A.9.7×10-7B.97×10-7C.0.97×10-7D.9.7×10-8

分析 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

解答 解:0.00000097=9.7×10-7
故选:A.

点评 本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,边长为2的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是4$\sqrt{2}$-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知⊙O的半径为5,⊙P与⊙O外切于点A,经过点A的直线与⊙O、⊙P分别交于点B、C,tan∠OAB=$\frac{\sqrt{21}}{2}$.
(1)求AB的长;
(2)当∠OCA=∠OPC时,求⊙P的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知点A的坐标为(a,b),O为坐标原点,连结OA,将线段OA绕点O按逆时针方向旋转180°得OA1,则点A1的坐标为(  )
A.(-a,b)B.(a,-b)C.(-a,-b)D.(b,-a)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.x为何值时,分式$\frac{x}{x-1}$的值比$\frac{2}{x+1}$的值多1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.为缓解实验北校“停车难”问题,现计划拟建造地下停车库,建筑师提供了地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,其中AB=10m,BC=0.5m,为在入口标明限高,请你根据该图计算出停车库的限高.(精确到0.1m)
(sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.设a为无理数,n为整数,我们定义:当|n-a|<|n+1-a|时,称a靠近n.例如:因为|1-$\sqrt{2}$|<|2-$\sqrt{2}$|,|1-$\sqrt{3}$|>|2-$\sqrt{3}$|,$\sqrt{2}$靠近1,$\sqrt{3}$靠近2.利用计算器探究:
(1)在$\sqrt{5}$,$\sqrt{6}$,$\sqrt{7}$,$\sqrt{8}$中哪些靠近2?哪些靠近3?
(2)在$\sqrt{10}$,$\sqrt{11}$,$\sqrt{12}$,$\sqrt{13}$,$\sqrt{14}$,$\sqrt{15}$中哪些靠近3?哪些靠近4?
(3)在$\sqrt{17}$,$\sqrt{18}$,$\sqrt{19}$,$\sqrt{20}$,$\sqrt{21}$,$\sqrt{22}$,$\sqrt{23}$中哪些靠近4?哪些靠近5?
(4)猜测:在$\sqrt{{n}^{2}+1}$,$\sqrt{{n}^{2}+2}$,$\sqrt{{n}^{2}+3}$,…,$\sqrt{(n+1)^{2}-1}$共有多少个无理数?其中多少个靠近n?(友情提示:$\sqrt{(n+1)^{2}-1}$=$\sqrt{{n}^{2}+2n}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某机械租赁公司有同一型号的机械设备40套,经过一段时间的经营发现,当每套设备的月租金为270元时,恰好全部租出,在此基础上,当每套设备的月租金每提高10元时,这种设备减少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元)
(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费用;
(2)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;
(3)当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.有一列数a1,a2,a3,…,an.其中a1=-1,a2=$\frac{1}{1{-a}_{1}}$,a3=$\frac{1}{1{-a}_{2}}$,…,an=$\frac{1}{1{-a}_{n-1}}$,则a1+a2+a3+…+a2015=1006.

查看答案和解析>>

同步练习册答案