精英家教网 > 初中数学 > 题目详情
16、如图,E、F是?ABCD的对角线BD上两点,且DE=BF.若∠AED=110°,∠ABD=25°,则∠DCF的度数为
85°
分析:首先由BF=DE可以得到BE=DF,然后利用平行四边形性质可以得到AB=CD,AB∥CD,接着利用平行线的性质可以得到∠ABD=∠CDB,利用全等三角形的判定方法即可得到△ABE≌△CDF,从而得到∠DFC=∠AEB,再根据条件∠AED=110°,求出∠DFC=∠AEB=70°后,即可根据三角形内角和为180°求的答案.
解答:解:∵BF=DE,
∴BF+EF=DE+EF,
即BE=DF,
∵?ABCD中,AB=CD,AB∥CD,
∴∠ABD=∠CDB=25°,
∴△ABE≌△CDF,
∴∠DFC=∠AEB,
∵∠AED=110°,
∴∠DFC=∠AEB=180°-110°=70°,
∴∠DCF=180°-25°-70°=85°.
故答案为:85°.
点评:此题主要考查了平行四边形的性质,同时也考查了三角形全等的判定,解题的关键是利用平行四边形的性质得到全等三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知C是AB的中点,D是AC的中点,E是BC的中点.
(1)若DE=9cm,求AB的长;
(2)若CE=5cm,求DB的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、(1)如图1,点E是AB,CD之间的一点且AB∥CD,试说明:∠BED=∠B+∠D;

(2)如图2,点E是AB,CD外一点且AB∥CD,结论有什么变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,E、F是AB上的两点,AE=BF,AC∥BD,∠C=∠D.求证:CF=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•荣昌县模拟)如图,⊙O的直径是AB,∠C=35°,则∠DAB的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,M是AB上一点,AM=8cm,BM=2cm,N是AB的中点,则MN的长为
3cm
3cm

查看答案和解析>>

同步练习册答案