精英家教网 > 初中数学 > 题目详情
如图,矩形OABC放置在第一象限内,已知A(3,0),∠AOB=30°,反比例函数y=的图像交BC、AB于点D、E.
(1)若点D为BC的中点,试证明点E为AB的中点;
(2)若点A关于直线OB的对称点为F,试探究:点F是否落在该双曲线上?
(1)证明见解析;(2)

试题分析:(1)根据直角三角形的性质,可得AB的长,根据矩形的性质,可得D点的坐标,根据待定系数法,可得反比例函数解析式,根据图象上的点满足函数解析式,可得证明结论;
(2)根据对称的性质,可得∠AOF的大小,OF与OA的关系,根据直角三角形的性质,可得F点的坐标,根据F点纵横坐标的乘积与反比例函数解析式中k的值,可得答案.
试题解析:(1)证明:∵OA=3,∠AOB=30°,
∴AB=
∵D点D为BC的中点,
∴D(1.5,).
∴反比例函数解析式是y=
当xE=3时,yE=
∴E为AB的中点;
(2)作FG⊥OA于点G,如图:点F没有落在双曲线上.

∵点A的对称点为,
∴∠AOF=60°.
∵OF=OA=3,
∴OG=,FG=
∴F().
×
∴点F没有落在双曲线上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

对于平面直角坐标系xOy中的点P(a,b),若点的坐标为()(其中k为常数,且),则称点为点P的“k属派生点”.
例如:P(1,4)的“2属派生点”为(1+),即(3,6).
(1)①点P的“2属派生点” 的坐标为____________; 
②若点P的“k属派生点” 的坐标为(3,3),请写出一个符合条件的点P的坐标____________;
(2)若点P在x轴的正半轴上,点P的“k属派生点”为点,且△为等腰直角三角形,则k的值为____________;
(3)如图, 点Q的坐标为(0,),点A在函数的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求B点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时, 材料温度是14℃.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);
(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个反比例函数的图象经过点(2,3),则这个反比例函数的解析式为(     )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算:
2c+a
(a-b)(b-c)(c-a)
+
b+c
(a-b)(c-b)(c-a)
-
b-a-c
(b-a)(c-b)(a-c)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=
探究:如图1,AH⊥BC于点H,则AH=       ,AC=    ,△ABC的面积SABC=      
拓展:如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为SABD=0)
(1)用含x,m,n的代数式表示SABD及SCBD
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.
发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4.反比例函数的图象经过顶点C,则k的值为       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下图,MN⊥PQ,垂足为点O,点A、C在直线MN上运动,点B、D在直线PQ上运动.顺次连结点A、B、C、D,围成四边形ABCD.当四边形ABCD的面积为6时,设AC长为x,BD长为y,则下图能表示y与x关系的图象是(   )

查看答案和解析>>

同步练习册答案