精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=,AC=,BC=1.
(1)求证:∠A≠30°;
(2)将△ABC绕BC所在直线旋转一周,求所得几何体的表面积.
【答案】分析:(1)根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,利用三角函数计算出sinA,然后与sin30°进行比较即可判断∠A≠30°;
(2)将△ABC绕BC所在直线旋转一周,所得的几何体为圆锥,圆锥的底面圆的半径为AC,母线长为AB,所得几何体的表面积分为底面积和侧面积,分别根据圆的面积公式和扇形的面积公式进行计算即可.
解答:证明:(1)∵BC2+AC2=1+2=3=AB2
∴△ABC是直角三角形,且∠C=90°.

∴∠A≠30°.

(2)将△ABC绕BC所在直线旋转一周,所得的几何体为圆锥,
∴圆锥的底面圆的半径=
∴圆锥的底面圆的周长=2π•=2π;母线长为
∴几何体的表面积π+π×(2=π+2π.
点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,它的弧长为圆锥的底面圆的周长,扇形的半径为母线长,圆锥的侧面积=扇形的面积=l•R(l为弧长,R为扇形的半径);也考查了勾股定理的逆定理以及特殊角的三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案